論文の概要: Tracing Intricate Cues in Dialogue: Joint Graph Structure and Sentiment Dynamics for Multimodal Emotion Recognition
- arxiv url: http://arxiv.org/abs/2407.21536v1
- Date: Wed, 31 Jul 2024 11:47:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 18:02:39.936484
- Title: Tracing Intricate Cues in Dialogue: Joint Graph Structure and Sentiment Dynamics for Multimodal Emotion Recognition
- Title(参考訳): 対話における複雑なキューの追跡:マルチモーダル感情認識のための共同グラフ構造と知覚ダイナミクス
- Authors: Jiang Li, Xiaoping Wang, Zhigang Zeng,
- Abstract要約: マルチモーダル対話における複雑な感情的手がかりを追跡するために,GraphSmileという新しい手法が提案されている。
GraphSmileは2つの重要なコンポーネント、すなわちGSFとSDPモジュールから構成される。
複数のベンチマークにおける実証的な結果は、GraphSmileが複雑な感情的および感情的パターンを処理可能であることを示している。
- 参考スコア(独自算出の注目度): 37.12407597998884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal emotion recognition in conversation (MERC) has garnered substantial research attention recently. Existing MERC methods face several challenges: (1) they fail to fully harness direct inter-modal cues, possibly leading to less-than-thorough cross-modal modeling; (2) they concurrently extract information from the same and different modalities at each network layer, potentially triggering conflicts from the fusion of multi-source data; (3) they lack the agility required to detect dynamic sentimental changes, perhaps resulting in inaccurate classification of utterances with abrupt sentiment shifts. To address these issues, a novel approach named GraphSmile is proposed for tracking intricate emotional cues in multimodal dialogues. GraphSmile comprises two key components, i.e., GSF and SDP modules. GSF ingeniously leverages graph structures to alternately assimilate inter-modal and intra-modal emotional dependencies layer by layer, adequately capturing cross-modal cues while effectively circumventing fusion conflicts. SDP is an auxiliary task to explicitly delineate the sentiment dynamics between utterances, promoting the model's ability to distinguish sentimental discrepancies. Furthermore, GraphSmile is effortlessly applied to multimodal sentiment analysis in conversation (MSAC), forging a unified multimodal affective model capable of executing MERC and MSAC tasks. Empirical results on multiple benchmarks demonstrate that GraphSmile can handle complex emotional and sentimental patterns, significantly outperforming baseline models.
- Abstract(参考訳): 近年,会話におけるマルチモーダル感情認識 (MERC) が注目されている。
既存のMERC手法では,(1)モーダル間の直接的手がかりを十分に活用できないこと,(2)モーダル間モデリングの精度が低いこと,(2)同一かつ異なるモダリティから情報を同時に抽出すること,(3)動的感情変化を検出するために必要な機敏さが欠如していること,(3)突然の感情変化を伴う発話の分類が不正確なこと,など,いくつかの課題に直面している。
これらの問題に対処するために、マルチモーダル対話における複雑な感情的手がかりを追跡するために、GraphSmileという新しいアプローチが提案されている。
GraphSmileは2つの重要なコンポーネント、すなわちGSFとSDPモジュールから構成される。
GSFはグラフ構造を巧みに利用し、相互依存層と相互依存層を層ごとに交互に同化し、相互依存層を適切に捕捉し、核融合の衝突を効果的に回避する。
SDPは、発話間の感情のダイナミクスを明確に説明し、感情の相違を識別するモデルの能力を促進する補助的なタスクである。
さらに、GraphSmileは会話におけるマルチモーダル感情分析(MSAC)に適用され、MERCおよびMSACタスクの実行が可能な統合マルチモーダル感情モデルが構築される。
複数のベンチマークにおける実証的な結果は、GraphSmileが複雑な感情的および感情的パターンを処理できることを示し、ベースラインモデルよりも大幅に優れています。
関連論文リスト
- AIMDiT: Modality Augmentation and Interaction via Multimodal Dimension Transformation for Emotion Recognition in Conversations [57.99479708224221]
AIMDiTと呼ばれる新しいフレームワークを提案し、深い特徴のマルチモーダル融合の問題を解決する。
公開ベンチマークデータセットMELDでAIMDiTフレームワークを使用して行った実験では、Acc-7とw-F1メトリクスの2.34%と2.87%の改善が明らかにされた。
論文 参考訳(メタデータ) (2024-04-12T11:31:18Z) - Adversarial Representation with Intra-Modal and Inter-Modal Graph Contrastive Learning for Multimodal Emotion Recognition [14.639340916340801]
マルチモーダル感情認識 (AR-IIGCN) 法に対して, モーダル内およびモーダル間グラフコントラストを用いた新しい適応表現を提案する。
まず、ビデオ、オーディオ、テキストの特徴を多層パーセプトロン(MLP)に入力し、それらを別々の特徴空間にマッピングする。
第2に,逆表現による3つのモーダル特徴に対するジェネレータと判別器を構築する。
第3に、モーダル内およびモーダル間相補的意味情報を取得するために、コントラッシブグラフ表現学習を導入する。
論文 参考訳(メタデータ) (2023-12-28T01:57:26Z) - Multimodal Prompt Transformer with Hybrid Contrastive Learning for
Emotion Recognition in Conversation [9.817888267356716]
会話におけるマルチモーダル感情認識(ERC)は2つの問題に直面している。
表現能力の強いモダリティに対して深部感情の手がかり抽出を行った。
特徴フィルタは、表現能力の弱いモダリティのためのマルチモーダルプロンプト情報として設計された。
MPTは、Transformerの各アテンション層にマルチモーダル融合情報を埋め込む。
論文 参考訳(メタデータ) (2023-10-04T13:54:46Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
マルチモーダルエンティティリンクタスクは、マルチモーダル知識グラフへの曖昧な言及を解決することを目的としている。
MELタスクを解決するための新しいMulti-Grained Multimodal InteraCtion Network $textbf(MIMIC)$ frameworkを提案する。
論文 参考訳(メタデータ) (2023-07-19T02:11:19Z) - Cross-Attention is Not Enough: Incongruity-Aware Dynamic Hierarchical
Fusion for Multimodal Affect Recognition [69.32305810128994]
モダリティ間の同調性は、特に認知に影響を及ぼすマルチモーダル融合の課題となる。
本稿では,動的モダリティゲーティング(HCT-DMG)を用いた階層型クロスモーダルトランスを提案する。
HCT-DMG: 1) 従来のマルチモーダルモデルを約0.8Mパラメータで上回り、2) 不整合が認識に影響を及ぼすハードサンプルを認識し、3) 潜在レベルの非整合性をクロスモーダルアテンションで緩和する。
論文 参考訳(メタデータ) (2023-05-23T01:24:15Z) - M2R2: Missing-Modality Robust emotion Recognition framework with
iterative data augmentation [6.962213869946514]
学習された共通表現による反復的データ拡張で感情認識モデルを訓練するミス・モダリティ・ロバスト感情認識(M2R2)を提案する。
Party Attentive Network (PANet)は、すべての話者の状態と状況を追跡する感情を分類するために設計された。
論文 参考訳(メタデータ) (2022-05-05T09:16:31Z) - Group Gated Fusion on Attention-based Bidirectional Alignment for
Multimodal Emotion Recognition [63.07844685982738]
本稿では、LSTM隠蔽状態上の注目に基づく双方向アライメントネットワークで構成されるGBAN(Gated Bidirectional Alignment Network)と呼ばれる新しいモデルを提案する。
LSTMの最後の隠れ状態よりもアテンション整列表現の方が有意に優れていたことを実証的に示す。
提案したGBANモデルは、IEMOCAPデータセットにおける既存の最先端マルチモーダルアプローチよりも優れている。
論文 参考訳(メタデータ) (2022-01-17T09:46:59Z) - Fusion with Hierarchical Graphs for Mulitmodal Emotion Recognition [7.147235324895931]
本稿では,より情報に富んだマルチモーダル表現を学習する階層型グラフネットワーク(HFGCN)モデルを提案する。
具体的には,2段階グラフ構築手法を用いてマルチモーダル入力を融合し,モダリティ依存性を会話表現にエンコードする。
実験により,より正確なAERモデルの有効性が示された。
論文 参考訳(メタデータ) (2021-09-15T08:21:01Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) は、歩行者検索の課題である。
既存のVI-ReID法は、識別可能性に制限があり、ノイズの多い画像に対して弱いロバスト性を持つグローバル表現を学習する傾向にある。
そこで我々は,VI-ReIDのための動的二段階集合(DDAG)学習法を提案する。
論文 参考訳(メタデータ) (2020-07-18T03:08:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。