論文の概要: InScope: A New Real-world 3D Infrastructure-side Collaborative Perception Dataset for Open Traffic Scenarios
- arxiv url: http://arxiv.org/abs/2407.21581v1
- Date: Wed, 31 Jul 2024 13:11:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 12:37:28.318452
- Title: InScope: A New Real-world 3D Infrastructure-side Collaborative Perception Dataset for Open Traffic Scenarios
- Title(参考訳): InScope: オープントラフィックシナリオのための3Dインフラストラクチャサイドコラボレーションパーセプションデータセット
- Authors: Xiaofei Zhang, Yining Li, Jinping Wang, Xiangyi Qin, Ying Shen, Zhengping Fan, Xiaojun Tan,
- Abstract要約: 本稿では,新しい3次元インフラ側協調認識データセットについて紹介する。
InScopeは303の追跡軌道と187,787個の3D境界ボックスで20日間の捕獲期間をカプセル化している。
- 参考スコア(独自算出の注目度): 13.821143687548494
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Perception systems of autonomous vehicles are susceptible to occlusion, especially when examined from a vehicle-centric perspective. Such occlusion can lead to overlooked object detections, e.g., larger vehicles such as trucks or buses may create blind spots where cyclists or pedestrians could be obscured, accentuating the safety concerns associated with such perception system limitations. To mitigate these challenges, the vehicle-to-everything (V2X) paradigm suggests employing an infrastructure-side perception system (IPS) to complement autonomous vehicles with a broader perceptual scope. Nevertheless, the scarcity of real-world 3D infrastructure-side datasets constrains the advancement of V2X technologies. To bridge these gaps, this paper introduces a new 3D infrastructure-side collaborative perception dataset, abbreviated as inscope. Notably, InScope is the first dataset dedicated to addressing occlusion challenges by strategically deploying multiple-position Light Detection and Ranging (LiDAR) systems on the infrastructure side. Specifically, InScope encapsulates a 20-day capture duration with 303 tracking trajectories and 187,787 3D bounding boxes annotated by experts. Through analysis of benchmarks, four different benchmarks are presented for open traffic scenarios, including collaborative 3D object detection, multisource data fusion, data domain transfer, and 3D multiobject tracking tasks. Additionally, a new metric is designed to quantify the impact of occlusion, facilitating the evaluation of detection degradation ratios among various algorithms. The Experimental findings showcase the enhanced performance of leveraging InScope to assist in detecting and tracking 3D multiobjects in real-world scenarios, particularly in tracking obscured, small, and distant objects. The dataset and benchmarks are available at https://github.com/xf-zh/InScope.
- Abstract(参考訳): 自動運転車の知覚システムは、特に車両中心の視点で調べると、閉塞の影響を受けやすい。
例えば、トラックやバスのような大型車両は、サイクリストや歩行者が見えない場所を作ることができ、そのような認識システムの制限に関連する安全上の懸念を強調できる。
これらの課題を軽減するため、V2Xパラダイムは、より広い知覚範囲で自動運転車を補完するインフラ側認識システム(IPS)を採用することを提案している。
それでも、現実世界の3Dインフラストラクチャサイドデータセットの不足は、V2X技術の進歩を妨げている。
これらのギャップを埋めるために,本研究では,インスコープ(inscope)と呼ばれる,新しい3次元インフラ側協調認識データセットを提案する。
特に、InScopeは、インフラストラクチャ側で複数位置光検出およびランキング(LiDAR)システムを戦略的にデプロイすることで、オクルージョンの課題に対処するための最初のデータセットである。
具体的には、InScopeは303の追跡軌道と187,787の3D境界ボックスで20日間の捕獲期間をカプセル化している。
ベンチマークの分析を通じて、協調的な3Dオブジェクト検出、マルチソースデータ融合、データドメイン転送、および3Dマルチオブジェクト追跡タスクを含む、オープントラフィックシナリオのための4つの異なるベンチマークが提示される。
さらに,オクルージョンの影響を定量化し,様々なアルゴリズムによる検出劣化率の評価を容易にする。
実験結果から,InScopeを利用した実世界のシナリオにおける3次元多目的物体の検出・追跡,特に隠れた,小さな,遠く離れた物体の追跡に有効であることが示された。
データセットとベンチマークはhttps://github.com/xf-zh/InScope.comで公開されている。
関連論文リスト
- Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
本研究は,カメラとライダー情報を用いた物体検出ネットワークに新たな改良を加えたものである。
同じ車両内の隣のカメラにまたがって物体を再識別する作業のために、追加のブランチが組み込まれている。
その結果,従来の非最大抑圧(NMS)技術よりも,この手法が優れていることが示された。
論文 参考訳(メタデータ) (2023-10-09T15:16:35Z) - SKoPe3D: A Synthetic Dataset for Vehicle Keypoint Perception in 3D from
Traffic Monitoring Cameras [26.457695296042903]
道路側から見たユニークな合成車両キーポイントデータセットであるSKoPe3Dを提案する。
SKoPe3Dには150万以上の車両インスタンスと490万のキーポイントがある。
実験では、データセットの適用性と、合成データと実世界のデータ間の知識伝達の可能性を強調した。
論文 参考訳(メタデータ) (2023-09-04T02:57:30Z) - CXTrack: Improving 3D Point Cloud Tracking with Contextual Information [59.55870742072618]
3Dオブジェクトトラッキングは、自律運転など、多くのアプリケーションにおいて重要な役割を果たす。
CXTrackは3次元オブジェクト追跡のためのトランスフォーマーベースのネットワークである。
CXTrackは29FPSで動作しながら最先端のトラッキング性能を実現する。
論文 参考訳(メタデータ) (2022-11-12T11:29:01Z) - DOLPHINS: Dataset for Collaborative Perception enabled Harmonious and
Interconnected Self-driving [19.66714697653504]
V2Xネットワークは、自動運転における協調的な認識を可能にしている。
データセットの欠如は、協調認識アルゴリズムの開発を著しく妨げている。
DOLPHINS: cOllaborative Perception を実現するためのデータセットである Harmonious と Inter connected Self-driving をリリースする。
論文 参考訳(メタデータ) (2022-07-15T17:07:07Z) - Collaborative 3D Object Detection for Automatic Vehicle Systems via
Learnable Communications [8.633120731620307]
本稿では,3つのコンポーネントから構成される新しい3次元オブジェクト検出フレームワークを提案する。
実験結果と帯域使用量分析により,本手法は通信コストと計算コストを削減できることを示した。
論文 参考訳(メタデータ) (2022-05-24T07:17:32Z) - Hindsight is 20/20: Leveraging Past Traversals to Aid 3D Perception [59.2014692323323]
小さな、遠く、あるいは非常に隠蔽された物体は、検出するためのLiDAR点雲に限られた情報があるため、特に困難である。
本稿では,過去データから文脈情報を抽出する,エンドツーエンドのトレーニング可能な新しいフレームワークを提案する。
このフレームワークは現代のほとんどの3D検出アーキテクチャと互換性があり、複数の自律走行データセットの平均精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-03-22T00:58:27Z) - High-level camera-LiDAR fusion for 3D object detection with machine
learning [0.0]
本稿では,自律運転などの応用において重要な3次元物体検出問題に取り組む。
モノクロカメラとLiDARデータを組み合わせた機械学習パイプラインを使用して、動くプラットフォームの周囲の3D空間内の車両を検出する。
本結果は,検証セットに対して効率よく精度の高い推定を行い,全体の精度は87.1%となった。
論文 参考訳(メタデータ) (2021-05-24T01:57:34Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - siaNMS: Non-Maximum Suppression with Siamese Networks for Multi-Camera
3D Object Detection [65.03384167873564]
サイムズネットワークは、よく知られた3Dオブジェクト検出器アプローチのパイプラインに統合される。
アソシエーションはオブジェクトの3Dボックスレグレッションを強化するために利用される。
nuScenesデータセットの実験的評価は,提案手法が従来のNMS手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2020-02-19T15:32:38Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
既存のイベント検出システムは、主に学習ベースであり、大量のトレーニングデータが利用可能な場合、十分なパフォーマンスを実現している。
現実のシナリオでは、十分なラベル付きトレーニングデータの収集は高価であり、時には不可能である。
本稿では,交通監視のためのトレーニング不要な単眼3Dイベント検出システムを提案する。
論文 参考訳(メタデータ) (2020-02-01T04:42:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。