InScope: A New Real-world 3D Infrastructure-side Collaborative Perception Dataset for Open Traffic Scenarios
- URL: http://arxiv.org/abs/2407.21581v1
- Date: Wed, 31 Jul 2024 13:11:14 GMT
- Title: InScope: A New Real-world 3D Infrastructure-side Collaborative Perception Dataset for Open Traffic Scenarios
- Authors: Xiaofei Zhang, Yining Li, Jinping Wang, Xiangyi Qin, Ying Shen, Zhengping Fan, Xiaojun Tan,
- Abstract summary: This paper introduces a new 3D infrastructure-side collaborative perception dataset, abbreviated as inscope.
InScope encapsulates a 20-day capture duration with 303 tracking trajectories and 187,787 3D bounding boxes annotated by experts.
- Score: 13.821143687548494
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Perception systems of autonomous vehicles are susceptible to occlusion, especially when examined from a vehicle-centric perspective. Such occlusion can lead to overlooked object detections, e.g., larger vehicles such as trucks or buses may create blind spots where cyclists or pedestrians could be obscured, accentuating the safety concerns associated with such perception system limitations. To mitigate these challenges, the vehicle-to-everything (V2X) paradigm suggests employing an infrastructure-side perception system (IPS) to complement autonomous vehicles with a broader perceptual scope. Nevertheless, the scarcity of real-world 3D infrastructure-side datasets constrains the advancement of V2X technologies. To bridge these gaps, this paper introduces a new 3D infrastructure-side collaborative perception dataset, abbreviated as inscope. Notably, InScope is the first dataset dedicated to addressing occlusion challenges by strategically deploying multiple-position Light Detection and Ranging (LiDAR) systems on the infrastructure side. Specifically, InScope encapsulates a 20-day capture duration with 303 tracking trajectories and 187,787 3D bounding boxes annotated by experts. Through analysis of benchmarks, four different benchmarks are presented for open traffic scenarios, including collaborative 3D object detection, multisource data fusion, data domain transfer, and 3D multiobject tracking tasks. Additionally, a new metric is designed to quantify the impact of occlusion, facilitating the evaluation of detection degradation ratios among various algorithms. The Experimental findings showcase the enhanced performance of leveraging InScope to assist in detecting and tracking 3D multiobjects in real-world scenarios, particularly in tracking obscured, small, and distant objects. The dataset and benchmarks are available at https://github.com/xf-zh/InScope.
Related papers
- Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
This research paper introduces a novel modification to an object detection network that uses camera and lidar information.
It incorporates an additional branch designed for the task of re-identifying objects across adjacent cameras within the same vehicle.
The results underscore the superiority of this method over traditional Non-Maximum Suppression (NMS) techniques.
arXiv Detail & Related papers (2023-10-09T15:16:35Z) - SKoPe3D: A Synthetic Dataset for Vehicle Keypoint Perception in 3D from
Traffic Monitoring Cameras [26.457695296042903]
We propose SKoPe3D, a unique synthetic vehicle keypoint dataset from a roadside perspective.
SKoPe3D contains over 150k vehicle instances and 4.9 million keypoints.
Our experiments highlight the dataset's applicability and the potential for knowledge transfer between synthetic and real-world data.
arXiv Detail & Related papers (2023-09-04T02:57:30Z) - CXTrack: Improving 3D Point Cloud Tracking with Contextual Information [59.55870742072618]
3D single object tracking plays an essential role in many applications, such as autonomous driving.
We propose CXTrack, a novel transformer-based network for 3D object tracking.
We show that CXTrack achieves state-of-the-art tracking performance while running at 29 FPS.
arXiv Detail & Related papers (2022-11-12T11:29:01Z) - DOLPHINS: Dataset for Collaborative Perception enabled Harmonious and
Interconnected Self-driving [19.66714697653504]
Vehicle-to-Everything (V2X) network has enabled collaborative perception in autonomous driving.
The lack of datasets has severely blocked the development of collaborative perception algorithms.
We release DOLPHINS: dataset for cOllaborative Perception enabled Harmonious and INterconnected Self-driving.
arXiv Detail & Related papers (2022-07-15T17:07:07Z) - Collaborative 3D Object Detection for Automatic Vehicle Systems via
Learnable Communications [8.633120731620307]
We propose a novel collaborative 3D object detection framework that consists of three components.
Experiment results and bandwidth usage analysis demonstrate that our approach can save communication and computation costs.
arXiv Detail & Related papers (2022-05-24T07:17:32Z) - Hindsight is 20/20: Leveraging Past Traversals to Aid 3D Perception [59.2014692323323]
Small, far-away, or highly occluded objects are particularly challenging because there is limited information in the LiDAR point clouds for detecting them.
We propose a novel, end-to-end trainable Hindsight framework to extract contextual information from past data.
We show that this framework is compatible with most modern 3D detection architectures and can substantially improve their average precision on multiple autonomous driving datasets.
arXiv Detail & Related papers (2022-03-22T00:58:27Z) - High-level camera-LiDAR fusion for 3D object detection with machine
learning [0.0]
This paper tackles the 3D object detection problem, which is of vital importance for applications such as autonomous driving.
It uses a Machine Learning pipeline on a combination of monocular camera and LiDAR data to detect vehicles in the surrounding 3D space of a moving platform.
Our results demonstrate an efficient and accurate inference on a validation set, achieving an overall accuracy of 87.1%.
arXiv Detail & Related papers (2021-05-24T01:57:34Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - siaNMS: Non-Maximum Suppression with Siamese Networks for Multi-Camera
3D Object Detection [65.03384167873564]
A siamese network is integrated into the pipeline of a well-known 3D object detector approach.
associations are exploited to enhance the 3D box regression of the object.
The experimental evaluation on the nuScenes dataset shows that the proposed method outperforms traditional NMS approaches.
arXiv Detail & Related papers (2020-02-19T15:32:38Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
Existing event detection systems are mostly learning-based and have achieved convincing performance when a large amount of training data is available.
In real-world scenarios, collecting sufficient labeled training data is expensive and sometimes impossible.
We propose a training-free monocular 3D event detection system for traffic surveillance.
arXiv Detail & Related papers (2020-02-01T04:42:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.