High-level camera-LiDAR fusion for 3D object detection with machine
learning
- URL: http://arxiv.org/abs/2105.11060v1
- Date: Mon, 24 May 2021 01:57:34 GMT
- Title: High-level camera-LiDAR fusion for 3D object detection with machine
learning
- Authors: Gustavo A. Salazar-Gomez, Miguel A. Saavedra-Ruiz, Victor A.
Romero-Cano
- Abstract summary: This paper tackles the 3D object detection problem, which is of vital importance for applications such as autonomous driving.
It uses a Machine Learning pipeline on a combination of monocular camera and LiDAR data to detect vehicles in the surrounding 3D space of a moving platform.
Our results demonstrate an efficient and accurate inference on a validation set, achieving an overall accuracy of 87.1%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper tackles the 3D object detection problem, which is of vital
importance for applications such as autonomous driving. Our framework uses a
Machine Learning (ML) pipeline on a combination of monocular camera and LiDAR
data to detect vehicles in the surrounding 3D space of a moving platform. It
uses frustum region proposals generated by State-Of-The-Art (SOTA) 2D object
detectors to segment LiDAR point clouds into point clusters which represent
potentially individual objects. We evaluate the performance of classical ML
algorithms as part of an holistic pipeline for estimating the parameters of 3D
bounding boxes which surround the vehicles around the moving platform. Our
results demonstrate an efficient and accurate inference on a validation set,
achieving an overall accuracy of 87.1%.
Related papers
- HeightFormer: A Semantic Alignment Monocular 3D Object Detection Method from Roadside Perspective [11.841338298700421]
We propose a novel 3D object detection framework integrating Spatial Former and Voxel Pooling Former to enhance 2D-to-3D projection based on height estimation.
Experiments were conducted using the Rope3D and DAIR-V2X-I dataset, and the results demonstrated the outperformance of the proposed algorithm in the detection of both vehicles and cyclists.
arXiv Detail & Related papers (2024-10-10T09:37:33Z) - STONE: A Submodular Optimization Framework for Active 3D Object Detection [20.54906045954377]
Key requirement for training an accurate 3D object detector is the availability of a large amount of LiDAR-based point cloud data.
This paper proposes a unified active 3D object detection framework, for greatly reducing the labeling cost of training 3D object detectors.
arXiv Detail & Related papers (2024-10-04T20:45:33Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
monocular 3D object detection holds significant importance across various applications, including autonomous driving and robotics.
In this paper, we present VFMM3D, an innovative framework that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations.
arXiv Detail & Related papers (2024-04-15T03:12:12Z) - SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics [0.7373617024876725]
In autonomous driving, 3D object detection provides more precise information for downstream tasks, including path planning and motion estimation.
We propose SeSame: a method aimed at enhancing semantic information in existing LiDAR-only based 3D object detection.
Experiments demonstrate the effectiveness of our method with performance improvements on the KITTI object detection benchmark.
arXiv Detail & Related papers (2024-03-11T08:17:56Z) - Cross-Cluster Shifting for Efficient and Effective 3D Object Detection
in Autonomous Driving [69.20604395205248]
We present a new 3D point-based detector model, named Shift-SSD, for precise 3D object detection in autonomous driving.
We introduce an intriguing Cross-Cluster Shifting operation to unleash the representation capacity of the point-based detector.
We conduct extensive experiments on the KITTI, runtime, and nuScenes datasets, and the results demonstrate the state-of-the-art performance of Shift-SSD.
arXiv Detail & Related papers (2024-03-10T10:36:32Z) - TripletTrack: 3D Object Tracking using Triplet Embeddings and LSTM [0.0]
3D object tracking is a critical task in autonomous driving systems.
In this paper we investigate the use of triplet embeddings in combination with motion representations for 3D object tracking.
arXiv Detail & Related papers (2022-10-28T15:23:50Z) - Weakly Supervised Training of Monocular 3D Object Detectors Using Wide
Baseline Multi-view Traffic Camera Data [19.63193201107591]
7DoF prediction of vehicles at an intersection is an important task for assessing potential conflicts between road users.
We develop an approach using a weakly supervised method of fine tuning 3D object detectors for traffic observation cameras.
Our method achieves vehicle 7DoF pose prediction accuracy on our dataset comparable to the top performing monocular 3D object detectors on autonomous vehicle datasets.
arXiv Detail & Related papers (2021-10-21T08:26:48Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
We propose a novel 3D object detection framework with dynamic information modeling.
Coarse predictions are generated in the first stage via a voxel-based region proposal network.
Experiments are conducted on the large-scale nuScenes 3D detection benchmark.
arXiv Detail & Related papers (2020-07-16T18:27:08Z) - BirdNet+: End-to-End 3D Object Detection in LiDAR Bird's Eye View [117.44028458220427]
On-board 3D object detection in autonomous vehicles often relies on geometry information captured by LiDAR devices.
We present a fully end-to-end 3D object detection framework that can infer oriented 3D boxes solely from BEV images.
arXiv Detail & Related papers (2020-03-09T15:08:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.