Measuring What Matters: Intrinsic Distance Preservation as a Robust Metric for Embedding Quality
- URL: http://arxiv.org/abs/2407.21590v1
- Date: Wed, 31 Jul 2024 13:26:09 GMT
- Title: Measuring What Matters: Intrinsic Distance Preservation as a Robust Metric for Embedding Quality
- Authors: Steven N. Hart, Thomas E. Tavolara,
- Abstract summary: This paper introduces the Intrinsic Distance Preservation Evaluation (IDPE) method for assessing embedding quality.
IDPE is based on the preservation of Mahalanobis distances between data points in the original and embedded spaces.
Our results show that IDPE offers a more comprehensive and reliable assessment of embedding quality across various scenarios.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Unsupervised embeddings are fundamental to numerous machine learning applications, yet their evaluation remains a challenging task. Traditional assessment methods often rely on extrinsic variables, such as performance in downstream tasks, which can introduce confounding factors and mask the true quality of embeddings. This paper introduces the Intrinsic Distance Preservation Evaluation (IDPE) method, a novel approach for assessing embedding quality based on the preservation of Mahalanobis distances between data points in the original and embedded spaces. We demonstrate the limitations of extrinsic evaluation methods through a simple example, highlighting how they can lead to misleading conclusions about embedding quality. IDPE addresses these issues by providing a task-independent measure of how well embeddings preserve the intrinsic structure of the original data. Our method leverages efficient similarity search techniques to make it applicable to large-scale datasets. We compare IDPE with established intrinsic metrics like trustworthiness and continuity, as well as extrinsic metrics such as Average Rank and Mean Reciprocal Rank. Our results show that IDPE offers a more comprehensive and reliable assessment of embedding quality across various scenarios. We evaluate PCA and t-SNE embeddings using IDPE, revealing insights into their performance that are not captured by traditional metrics. This work contributes to the field by providing a robust, efficient, and interpretable method for embedding evaluation. IDPE's focus on intrinsic properties offers a valuable tool for researchers and practitioners seeking to develop and assess high-quality embeddings for diverse machine learning applications.
Related papers
- Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
We propose a novel method called Margin bounded Confidence Scores (MaCS) to address the nontrivial OOD detection problem.
MaCS enlarges the disparity between ID and OOD scores, which in turn makes the decision boundary more compact.
Experiments on various benchmark datasets for image classification tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-09-22T05:40:25Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) aims to predict all quads (aspect term, aspect category, opinion term, sentiment polarity) for a given review.
A key challenge in the ASQP task is the scarcity of labeled data, which limits the performance of existing methods.
We propose a self-training framework with a pseudo-label scorer, wherein a scorer assesses the match between reviews and their pseudo-labels.
arXiv Detail & Related papers (2024-06-26T05:30:21Z) - Beyond Accuracy: Measuring Representation Capacity of Embeddings to
Preserve Structural and Contextual Information [1.8130068086063336]
We propose a method to measure the textitrepresentation capacity of embeddings.
The motivation behind this work stems from the importance of understanding the strengths and limitations of embeddings.
The proposed method not only contributes to advancing the field of embedding evaluation but also empowers researchers and practitioners with a quantitative measure.
arXiv Detail & Related papers (2023-09-20T13:21:12Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - The Meta-Evaluation Problem in Explainable AI: Identifying Reliable
Estimators with MetaQuantus [10.135749005469686]
One of the unsolved challenges in the field of Explainable AI (XAI) is determining how to most reliably estimate the quality of an explanation method.
We address this issue through a meta-evaluation of different quality estimators in XAI.
Our novel framework, MetaQuantus, analyses two complementary performance characteristics of a quality estimator.
arXiv Detail & Related papers (2023-02-14T18:59:02Z) - TRUE: Re-evaluating Factual Consistency Evaluation [29.888885917330327]
We introduce TRUE: a comprehensive study of factual consistency metrics on a standardized collection of existing texts from diverse tasks.
Our standardization enables an example-level meta-evaluation protocol that is more actionable and interpretable than previously reported correlations.
Across diverse state-of-the-art metrics and 11 datasets we find that large-scale NLI and question generation-and-answering-based approaches achieve strong and complementary results.
arXiv Detail & Related papers (2022-04-11T10:14:35Z) - GO FIGURE: A Meta Evaluation of Factuality in Summarization [131.1087461486504]
We introduce GO FIGURE, a meta-evaluation framework for evaluating factuality evaluation metrics.
Our benchmark analysis on ten factuality metrics reveals that our framework provides a robust and efficient evaluation.
It also reveals that while QA metrics generally improve over standard metrics that measure factuality across domains, performance is highly dependent on the way in which questions are generated.
arXiv Detail & Related papers (2020-10-24T08:30:20Z) - Towards Question-Answering as an Automatic Metric for Evaluating the
Content Quality of a Summary [65.37544133256499]
We propose a metric to evaluate the content quality of a summary using question-answering (QA)
We demonstrate the experimental benefits of QA-based metrics through an analysis of our proposed metric, QAEval.
arXiv Detail & Related papers (2020-10-01T15:33:09Z) - Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
Learning [70.72363097550483]
In this study, we focus on in-domain uncertainty for image classification.
To provide more insight in this study, we introduce the deep ensemble equivalent score (DEE)
arXiv Detail & Related papers (2020-02-15T23:28:19Z) - Interpretable Off-Policy Evaluation in Reinforcement Learning by
Highlighting Influential Transitions [48.91284724066349]
Off-policy evaluation in reinforcement learning offers the chance of using observational data to improve future outcomes in domains such as healthcare and education.
Traditional measures such as confidence intervals may be insufficient due to noise, limited data and confounding.
We develop a method that could serve as a hybrid human-AI system, to enable human experts to analyze the validity of policy evaluation estimates.
arXiv Detail & Related papers (2020-02-10T00:26:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.