論文の概要: Does the Source of a Warning Matter? Examining the Effectiveness of Veracity Warning Labels Across Warners
- arxiv url: http://arxiv.org/abs/2407.21592v1
- Date: Wed, 31 Jul 2024 13:27:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 17:52:02.766623
- Title: Does the Source of a Warning Matter? Examining the Effectiveness of Veracity Warning Labels Across Warners
- Title(参考訳): 警告の源泉はワーナーの至る所における警告ラベルの有効性について
- Authors: Benjamin D. Horne,
- Abstract要約: 我々は,警告ラベルソースが情報信頼や共有意図に与える影響をよりよく理解するために,オンライン・オブジェクト間実験を行った。
いずれも、制御に関する偽情報の信頼性を著しく低下させたが、AIからの警告はわずかに効果的であった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we conducted an online, between-subjects experiment (N = 2,049) to better understand the impact of warning label sources on information trust and sharing intentions. Across four warners (the social media platform, other social media users, Artificial Intelligence (AI), and fact checkers), we found that all significantly decreased trust in false information relative to control, but warnings from AI were modestly more effective. All warners significantly decreased the sharing intentions of false information, except warnings from other social media users. AI was again the most effective. These results were moderated by prior trust in media and the information itself. Most noteworthy, we found that warning labels from AI were significantly more effective than all other warning labels for participants who reported a low trust in news organizations, while warnings from AI were no more effective than any other warning label for participants who reported a high trust in news organizations.
- Abstract(参考訳): 本研究では,情報信頼と共有意図に対する警告ラベルソースの影響をよりよく理解するために,オンライン・オブジェクト間比較実験(N = 2,049)を行った。
4人のワーナー(ソーシャルメディアプラットフォーム、他のソーシャルメディアユーザー、人工知能(AI)、ファクトチェッカー)のうち、いずれも制御に関する誤った情報の信頼性を著しく低下させたが、AIからの警告はわずかに効果があった。
すべてのワーナーは、他のソーシャルメディアユーザーからの警告を除いて、偽情報の共有の意図を著しく減らした。
AIは、再び最も効果的だった。
これらの結果は、メディアと情報そのものに対する事前の信頼によって中和された。
最も注目すべきは、AIからの警告ラベルが、ニュース組織への信頼度が低いと報告した参加者に対して、他の警告ラベルよりもはるかに効果的であること、そして、ニュース組織への信頼度が高いと報告した参加者に対して、AIからの警告ラベルが他の警告ラベルよりも効果的であることである。
関連論文リスト
- Human Bias in the Face of AI: The Role of Human Judgement in AI Generated Text Evaluation [48.70176791365903]
本研究では、偏見がAIと人為的コンテンツの知覚をどう形成するかを考察する。
ラベル付きおよびラベルなしコンテンツに対するヒトのラッカーの反応について検討した。
論文 参考訳(メタデータ) (2024-09-29T04:31:45Z) - The effect of source disclosure on evaluation of AI-generated messages:
A two-part study [0.0]
情報源開示がAIによる健康被害防止メッセージの評価に与える影響について検討した。
情報源の開示はメッセージの評価に大きな影響を及ぼすが、メッセージのランキングを大きく変更することはなかった。
AIに対する否定的な態度の適度なレベルを持つ人にとっては、ソース開示はAI生成メッセージの嗜好を減らした。
論文 参考訳(メタデータ) (2023-11-27T05:20:47Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
本稿では,ニュース間のグループ間相互作用を表現するためにハイパーグラフを活用することを提案する。
提案手法は,ラベル付きニュースデータの小さなサブセットであっても,優れた性能を示し,高い性能を維持する。
論文 参考訳(メタデータ) (2022-12-24T00:19:32Z) - Deceptive AI Systems That Give Explanations Are Just as Convincing as
Honest AI Systems in Human-Machine Decision Making [38.71592583606443]
真実と偽の情報を見分ける能力は、健全な決定を下す上で不可欠である。
近年、AIに基づく偽情報キャンペーンが増加し、人間の情報処理に対する偽情報システムの影響を理解することが重要になっている。
論文 参考訳(メタデータ) (2022-09-23T20:09:03Z) - Meaningful Context, a Red Flag, or Both? Users' Preferences for Enhanced
Misinformation Warnings on Twitter [6.748225062396441]
本研究では,ソーシャルメディア上での誤情報のソフトモデレーションにおけるユーザ調整による改善を提案する。
私たちは337人の参加者によるユーザビリティ調査で、Twitterのオリジナルの警告タグを使ってA/B評価を実行しました。
参加者の大多数は、誤報の認識と回避に苦慮した。
論文 参考訳(メタデータ) (2022-05-02T22:47:49Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - Cybersecurity Misinformation Detection on Social Media: Case Studies on
Phishing Reports and Zoom's Threats [1.2387676601792899]
ソーシャルメディア上でのサイバーセキュリティとプライバシの脅威に関する誤報を検出するための新しいアプローチを提案する。
我々はTwitter上で不正確なフィッシングのクレームを検出するためのフレームワークを開発した。
また、Zoomのセキュリティやプライバシの脅威に関連する誤情報を検出するための別のフレームワークも提案した。
論文 参考訳(メタデータ) (2021-10-23T20:45:24Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
我々は、ユーザーがフェイクニュースを共有するのに、ユーザー属性が何をもたらすかを理解することが重要だと論じている。
偽ニュース拡散において、共同創設者は、本質的にユーザー属性やオンライン活動に関連する偽ニュース共有行動によって特徴づけられる。
本稿では,偽ニュース拡散における選択バイアスを軽減するための原則的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-20T19:37:04Z) - Adapting Security Warnings to Counter Online Disinformation [6.592035021489205]
我々は、効果的な偽情報警告を設計するために、情報セキュリティ警告文献の方法と結果を適用する。
ユーザがいつもコンテキスト警告を無視しているのが分かりましたが、ユーザは間欠警告に気付きます。
警告の設計がユーザに効果的に通知したり、危害のリスクを伝えることができることがわかったのです。
論文 参考訳(メタデータ) (2020-08-25T01:10:57Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。