Evaluating SAM2's Role in Camouflaged Object Detection: From SAM to SAM2
- URL: http://arxiv.org/abs/2407.21596v1
- Date: Wed, 31 Jul 2024 13:32:10 GMT
- Title: Evaluating SAM2's Role in Camouflaged Object Detection: From SAM to SAM2
- Authors: Lv Tang, Bo Li,
- Abstract summary: Report reveals a decline in SAM2's ability to perceive different objects in images without prompts in its auto mode.
Specifically, we employ the challenging task of camouflaged object detection to assess this performance decrease.
- Score: 10.751277821864916
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Segment Anything Model (SAM), introduced by Meta AI Research as a generic object segmentation model, quickly garnered widespread attention and significantly influenced the academic community. To extend its application to video, Meta further develops Segment Anything Model 2 (SAM2), a unified model capable of both video and image segmentation. SAM2 shows notable improvements over its predecessor in terms of applicable domains, promptable segmentation accuracy, and running speed. However, this report reveals a decline in SAM2's ability to perceive different objects in images without prompts in its auto mode, compared to SAM. Specifically, we employ the challenging task of camouflaged object detection to assess this performance decrease, hoping to inspire further exploration of the SAM model family by researchers. The results of this paper are provided in \url{https://github.com/luckybird1994/SAMCOD}.
Related papers
- Unleashing the Potential of SAM2 for Biomedical Images and Videos: A Survey [8.216028136706948]
Segment Anything Model (SAM) signifies a noteworthy expansion of the prompt-driven paradigm into the domain of image segmentation.
Recent introduction of SAM2 effectively extends the original SAM to a streaming fashion and demonstrates strong performance in video segmentation.
This paper presents an overview of recent efforts in applying and adapting SAM2 to biomedical images and videos.
arXiv Detail & Related papers (2024-08-23T07:51:10Z) - SAM2-UNet: Segment Anything 2 Makes Strong Encoder for Natural and Medical Image Segmentation [51.90445260276897]
We prove that the Segment Anything Model 2 (SAM2) can be a strong encoder for U-shaped segmentation models.
We propose a simple but effective framework, termed SAM2-UNet, for versatile image segmentation.
arXiv Detail & Related papers (2024-08-16T17:55:38Z) - From SAM to SAM 2: Exploring Improvements in Meta's Segment Anything Model [0.5639904484784127]
The Segment Anything Model (SAM) was introduced to the computer vision community by Meta in April 2023.
SAM excels in zero-shot performance, segmenting unseen objects without additional training, stimulated by a large dataset of over one billion image masks.
SAM 2 expands this functionality to video, leveraging memory from preceding and subsequent frames to generate accurate segmentation across entire videos.
arXiv Detail & Related papers (2024-08-12T17:17:35Z) - SAM2-Adapter: Evaluating & Adapting Segment Anything 2 in Downstream Tasks: Camouflage, Shadow, Medical Image Segmentation, and More [16.40994541980171]
This paper introduces SAM2-Adapter, the first adapter designed to overcome the persistent limitations observed in SAM2.
It builds on the SAM-Adapter's strengths, offering enhanced generalizability and composability for diverse applications.
We show the potential and encourage the research community to leverage the SAM2 model with our SAM2-Adapter.
arXiv Detail & Related papers (2024-08-08T16:40:15Z) - Evaluation of Segment Anything Model 2: The Role of SAM2 in the Underwater Environment [2.0554501265326794]
The Segment Anything Model (SAM) and its extensions have been attempted for applications in various underwater visualization tasks in marine sciences.
Recently, Meta has developed the Segment Anything Model 2 (SAM2), which significantly improves running speed and segmentation accuracy.
This report aims to explore the potential of SAM2 in marine science by evaluating it on the underwater instance segmentation datasets benchmark UIIS and USIS10K.
arXiv Detail & Related papers (2024-08-06T03:20:10Z) - Segment Anything for Videos: A Systematic Survey [52.28931543292431]
The recent wave of foundation models has witnessed tremendous success in computer vision (CV) and beyond.
The segment anything model (SAM) has sparked a passion for exploring task-agnostic visual foundation models.
This work conducts a systematic review on SAM for videos in the era of foundation models.
arXiv Detail & Related papers (2024-07-31T02:24:53Z) - FocSAM: Delving Deeply into Focused Objects in Segmenting Anything [58.042354516491024]
The Segment Anything Model (SAM) marks a notable milestone in segmentation models.
We propose FocSAM with a pipeline redesigned on two pivotal aspects.
First, we propose Dynamic Window Multi-head Self-Attention (Dwin-MSA) to dynamically refocus SAM's image embeddings on the target object.
Second, we propose Pixel-wise Dynamic ReLU (P-DyReLU) to enable sufficient integration of interactive information from a few initial clicks.
arXiv Detail & Related papers (2024-05-29T02:34:13Z) - Moving Object Segmentation: All You Need Is SAM (and Flow) [82.78026782967959]
We investigate two models for combining SAM with optical flow that harness the segmentation power of SAM with the ability of flow to discover and group moving objects.
In the first model, we adapt SAM to take optical flow, rather than RGB, as an input. In the second, SAM takes RGB as an input, and flow is used as a segmentation prompt.
These surprisingly simple methods, without any further modifications, outperform all previous approaches by a considerable margin in both single and multi-object benchmarks.
arXiv Detail & Related papers (2024-04-18T17:59:53Z) - Boosting Segment Anything Model Towards Open-Vocabulary Learning [69.42565443181017]
Segment Anything Model (SAM) has emerged as a new paradigmatic vision foundation model.
Despite SAM finding applications and adaptations in various domains, its primary limitation lies in the inability to grasp object semantics.
We present Sambor to seamlessly integrate SAM with the open-vocabulary object detector in an end-to-end framework.
arXiv Detail & Related papers (2023-12-06T17:19:00Z) - A Survey on Segment Anything Model (SAM): Vision Foundation Model Meets Prompt Engineering [49.732628643634975]
The Segment Anything Model (SAM), developed by Meta AI Research, offers a robust framework for image and video segmentation.
This survey provides a comprehensive exploration of the SAM family, including SAM and SAM 2, highlighting their advancements in granularity and contextual understanding.
arXiv Detail & Related papers (2023-05-12T07:21:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.