SAM2-Adapter: Evaluating & Adapting Segment Anything 2 in Downstream Tasks: Camouflage, Shadow, Medical Image Segmentation, and More
- URL: http://arxiv.org/abs/2408.04579v2
- Date: Sat, 10 Aug 2024 11:20:52 GMT
- Title: SAM2-Adapter: Evaluating & Adapting Segment Anything 2 in Downstream Tasks: Camouflage, Shadow, Medical Image Segmentation, and More
- Authors: Tianrun Chen, Ankang Lu, Lanyun Zhu, Chaotao Ding, Chunan Yu, Deyi Ji, Zejian Li, Lingyun Sun, Papa Mao, Ying Zang,
- Abstract summary: This paper introduces SAM2-Adapter, the first adapter designed to overcome the persistent limitations observed in SAM2.
It builds on the SAM-Adapter's strengths, offering enhanced generalizability and composability for diverse applications.
We show the potential and encourage the research community to leverage the SAM2 model with our SAM2-Adapter.
- Score: 16.40994541980171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of large models, also known as foundation models, has significantly transformed the AI research landscape, with models like Segment Anything (SAM) achieving notable success in diverse image segmentation scenarios. Despite its advancements, SAM encountered limitations in handling some complex low-level segmentation tasks like camouflaged object and medical imaging. In response, in 2023, we introduced SAM-Adapter, which demonstrated improved performance on these challenging tasks. Now, with the release of Segment Anything 2 (SAM2), a successor with enhanced architecture and a larger training corpus, we reassess these challenges. This paper introduces SAM2-Adapter, the first adapter designed to overcome the persistent limitations observed in SAM2 and achieve new state-of-the-art (SOTA) results in specific downstream tasks including medical image segmentation, camouflaged (concealed) object detection, and shadow detection. SAM2-Adapter builds on the SAM-Adapter's strengths, offering enhanced generalizability and composability for diverse applications. We present extensive experimental results demonstrating SAM2-Adapter's effectiveness. We show the potential and encourage the research community to leverage the SAM2 model with our SAM2-Adapter for achieving superior segmentation outcomes. Code, pre-trained models, and data processing protocols are available at http://tianrun-chen.github.io/SAM-Adaptor/
Related papers
- SAM2-UNet: Segment Anything 2 Makes Strong Encoder for Natural and Medical Image Segmentation [51.90445260276897]
We prove that the Segment Anything Model 2 (SAM2) can be a strong encoder for U-shaped segmentation models.
We propose a simple but effective framework, termed SAM2-UNet, for versatile image segmentation.
arXiv Detail & Related papers (2024-08-16T17:55:38Z) - Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection [58.241593208031816]
Segment Anything Model (SAM) has been proposed as a visual fundamental model, which gives strong segmentation and generalization capabilities.
We propose a Multi-scale and Detail-enhanced SAM (MDSAM) for Salient Object Detection (SOD)
Experimental results demonstrate the superior performance of our model on multiple SOD datasets.
arXiv Detail & Related papers (2024-08-08T09:09:37Z) - Is SAM 2 Better than SAM in Medical Image Segmentation? [0.6144680854063939]
The Segment Anything Model (SAM) has demonstrated impressive performance in zero-shot promptable segmentation on natural images.
The recently released Segment Anything Model 2 (SAM 2) claims to outperform SAM on images and extends the model's capabilities to video segmentation.
We conducted extensive studies using multiple datasets to compare the performance of SAM and SAM 2.
arXiv Detail & Related papers (2024-08-08T04:34:29Z) - Path-SAM2: Transfer SAM2 for digital pathology semantic segmentation [6.721564277355789]
We propose Path-SAM2, which for the first time adapts the SAM2 model to cater to the task of pathological semantic segmentation.
We integrate the largest pretrained vision encoder for histopathology (UNI) with the original SAM2 encoder, adding more pathology-based prior knowledge.
In three adenoma pathological datasets, Path-SAM2 has achieved state-of-the-art performance.
arXiv Detail & Related papers (2024-08-07T09:30:51Z) - Evaluating SAM2's Role in Camouflaged Object Detection: From SAM to SAM2 [10.751277821864916]
Report reveals a decline in SAM2's ability to perceive different objects in images without prompts in its auto mode.
Specifically, we employ the challenging task of camouflaged object detection to assess this performance decrease.
arXiv Detail & Related papers (2024-07-31T13:32:10Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
We propose a novel feature learning framework named MAS-SAM for marine animal segmentation.
Our method enables to extract richer marine information from global contextual cues to fine-grained local details.
arXiv Detail & Related papers (2024-04-24T07:38:14Z) - Fantastic Animals and Where to Find Them: Segment Any Marine Animal with Dual SAM [62.85895749882285]
Marine Animal (MAS) involves segmenting animals within marine environments.
We propose a novel feature learning framework, named Dual-SAM for high-performance MAS.
Our proposed method achieves state-of-the-art performances on five widely-used MAS datasets.
arXiv Detail & Related papers (2024-04-07T15:34:40Z) - Open-Vocabulary SAM: Segment and Recognize Twenty-thousand Classes Interactively [69.97238935096094]
The Open-Vocabulary SAM is a SAM-inspired model designed for simultaneous interactive segmentation and recognition.
Our method can segment and recognize approximately 22,000 classes.
arXiv Detail & Related papers (2024-01-05T18:59:22Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation.
Recent studies and individual experiments have shown that SAM underperforms in medical image segmentation.
We propose the Medical SAM Adapter (Med-SA), which incorporates domain-specific medical knowledge into the segmentation model.
arXiv Detail & Related papers (2023-04-25T07:34:22Z) - SAM Fails to Segment Anything? -- SAM-Adapter: Adapting SAM in
Underperformed Scenes: Camouflage, Shadow, Medical Image Segmentation, and
More [13.047310918166762]
We propose textbfSAM-Adapter, which incorporates domain-specific information or visual prompts into the segmentation network by using simple yet effective adapters.
We can even outperform task-specific network models and achieve state-of-the-art performance in the task we tested: camouflaged object detection.
arXiv Detail & Related papers (2023-04-18T17:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.