Ironing the Graphs: Toward a Correct Geometric Analysis of Large-Scale Graphs
- URL: http://arxiv.org/abs/2407.21609v1
- Date: Wed, 31 Jul 2024 13:47:53 GMT
- Title: Ironing the Graphs: Toward a Correct Geometric Analysis of Large-Scale Graphs
- Authors: Saloua Naama, Kavé Salamatian, Francesco Bronzino,
- Abstract summary: We argue that the classical embedding techniques cannot lead to correct geometric interpretation as they miss the curvature at each point, of manifold.
We present an embedding approach, the discrete Ricci flow graph embedding (dRfge) based on the discrete Ricci flow.
A major contribution of this paper is that for the first time, we prove the convergence of discrete Ricci flow to a constant curvature and stable distance metrics over the edges.
- Score: 2.2557806157585834
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph embedding approaches attempt to project graphs into geometric entities, i.e, manifolds. The idea is that the geometric properties of the projected manifolds are helpful in the inference of graph properties. However, if the choice of the embedding manifold is incorrectly performed, it can lead to incorrect geometric inference. In this paper, we argue that the classical embedding techniques cannot lead to correct geometric interpretation as they miss the curvature at each point, of manifold. We advocate that for doing correct geometric interpretation the embedding of graph should be done over regular constant curvature manifolds. To this end, we present an embedding approach, the discrete Ricci flow graph embedding (dRfge) based on the discrete Ricci flow that adapts the distance between nodes in a graph so that the graph can be embedded onto a constant curvature manifold that is homogeneous and isotropic, i.e., all directions are equivalent and distances comparable, resulting in correct geometric interpretations. A major contribution of this paper is that for the first time, we prove the convergence of discrete Ricci flow to a constant curvature and stable distance metrics over the edges. A drawback of using the discrete Ricci flow is the high computational complexity that prevented its usage in large-scale graph analysis. Another contribution of this paper is a new algorithmic solution that makes it feasible to calculate the Ricci flow for graphs of up to 50k nodes, and beyond. The intuitions behind the discrete Ricci flow make it possible to obtain new insights into the structure of large-scale graphs. We demonstrate this through a case study on analyzing the internet connectivity structure between countries at the BGP level.
Related papers
- Generalization of Geometric Graph Neural Networks [84.01980526069075]
We study the generalization capabilities of geometric graph neural networks (GNNs)
We prove a generalization gap between the optimal empirical risk and the optimal statistical risk of this GNN.
The most important observation is that the generalization capability can be realized with one large graph instead of being limited to the size of the graph as in previous results.
arXiv Detail & Related papers (2024-09-08T18:55:57Z) - DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for
Alleviating Over-squashing [72.70197960100677]
Graph Structure Learning (GSL) plays an important role in boosting Graph Neural Networks (GNNs) with a refined graph.
GSL solutions usually focus on structure refinement with task-specific supervision (i.e., node classification) or overlook the inherent weakness of GNNs themselves.
We propose to study self-supervised graph structure-feature co-refinement for effectively alleviating the issue of over-squashing in typical GNNs.
arXiv Detail & Related papers (2024-01-23T14:06:08Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - How Curvature Enhance the Adaptation Power of Framelet GCNs [27.831929635701886]
Graph neural network (GNN) has been demonstrated powerful in modeling graph-structured data.
This paper introduces a new approach to enhance GNN by discrete graph Ricci curvature.
We show that our curvature-based GNN model outperforms the state-of-the-art baselines in both homophily and heterophily graph datasets.
arXiv Detail & Related papers (2023-07-19T06:05:33Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
We study the relationship between a graph neural network (GNN) and a manifold neural network (MNN) when the graph is constructed from a set of points sampled from the manifold.
We prove non-asymptotic error bounds showing that convolutional filters and neural networks on these graphs converge to convolutional filters and neural networks on the continuous manifold.
arXiv Detail & Related papers (2023-05-29T08:27:17Z) - Contrastive Graph Clustering in Curvature Spaces [74.03252813800334]
We present a novel end-to-end contrastive graph clustering model named CONGREGATE.
To support geometric clustering, we construct a theoretically grounded Heterogeneous Curvature Space.
We then train the graph clusters by an augmentation-free reweighted contrastive approach.
arXiv Detail & Related papers (2023-05-05T14:04:52Z) - Heterogeneous manifolds for curvature-aware graph embedding [6.3351090376024155]
Graph embeddings are used in a broad range of Graph ML applications.
The quality of such embeddings crucially depends on whether the geometry of the space matches that of the graph.
arXiv Detail & Related papers (2022-02-02T18:18:35Z) - Settling the Sharp Reconstruction Thresholds of Random Graph Matching [19.54246087326288]
We study the problem of recovering the hidden correspondence between two edge-correlated random graphs.
For dense graphs with $p=n-o(1)$, we prove that there exists a sharp threshold.
For sparse ErdHos-R'enyi graphs with $p=n-Theta(1)$, we show that the all-or-nothing phenomenon no longer holds.
arXiv Detail & Related papers (2021-01-29T21:49:50Z) - Computationally Tractable Riemannian Manifolds for Graph Embeddings [10.420394952839242]
We show how to learn and optimize graph embeddings in certain curved Riemannian spaces.
Our results serve as new evidence for the benefits of non-Euclidean embeddings in machine learning pipelines.
arXiv Detail & Related papers (2020-02-20T10:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.