MART: MultiscAle Relational Transformer Networks for Multi-agent Trajectory Prediction
- URL: http://arxiv.org/abs/2407.21635v1
- Date: Wed, 31 Jul 2024 14:31:49 GMT
- Title: MART: MultiscAle Relational Transformer Networks for Multi-agent Trajectory Prediction
- Authors: Seongju Lee, Junseok Lee, Yeonguk Yu, Taeri Kim, Kyoobin Lee,
- Abstract summary: We present a Multiscleimat Transformer (MART) network for multi-agent trajectory prediction.
MART is a hypergraph transformer architecture to consider individual and group behaviors in transformer machinery.
In addition, we propose an Adaptive Group Estor (AGE) designed to infer complex group relations in real-world environments.
- Score: 5.8919870666241945
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multi-agent trajectory prediction is crucial to autonomous driving and understanding the surrounding environment. Learning-based approaches for multi-agent trajectory prediction, such as primarily relying on graph neural networks, graph transformers, and hypergraph neural networks, have demonstrated outstanding performance on real-world datasets in recent years. However, the hypergraph transformer-based method for trajectory prediction is yet to be explored. Therefore, we present a MultiscAle Relational Transformer (MART) network for multi-agent trajectory prediction. MART is a hypergraph transformer architecture to consider individual and group behaviors in transformer machinery. The core module of MART is the encoder, which comprises a Pair-wise Relational Transformer (PRT) and a Hyper Relational Transformer (HRT). The encoder extends the capabilities of a relational transformer by introducing HRT, which integrates hyperedge features into the transformer mechanism, promoting attention weights to focus on group-wise relations. In addition, we propose an Adaptive Group Estimator (AGE) designed to infer complex group relations in real-world environments. Extensive experiments on three real-world datasets (NBA, SDD, and ETH-UCY) demonstrate that our method achieves state-of-the-art performance, enhancing ADE/FDE by 3.9%/11.8% on the NBA dataset. Code is available at https://github.com/gist-ailab/MART.
Related papers
- CT-MVSNet: Efficient Multi-View Stereo with Cross-scale Transformer [8.962657021133925]
Cross-scale transformer (CT) processes feature representations at different stages without additional computation.
We introduce an adaptive matching-aware transformer (AMT) that employs different interactive attention combinations at multiple scales.
We also present a dual-feature guided aggregation (DFGA) that embeds the coarse global semantic information into the finer cost volume construction.
arXiv Detail & Related papers (2023-12-14T01:33:18Z) - 3M-TRANSFORMER: A Multi-Stage Multi-Stream Multimodal Transformer for
Embodied Turn-Taking Prediction [4.342241136871849]
We propose a new multimodal transformer-based architecture for predicting turn-taking in embodied, synchronized multi-perspective data.
Our experimental results on the recently introduced EgoCom dataset show a substantial performance improvement of up to 14.01% on average.
arXiv Detail & Related papers (2023-10-23T12:29:10Z) - Deformable Mixer Transformer with Gating for Multi-Task Learning of
Dense Prediction [126.34551436845133]
CNNs and Transformers have their own advantages and both have been widely used for dense prediction in multi-task learning (MTL)
We present a novel MTL model by combining both merits of deformable CNN and query-based Transformer with shared gating for multi-task learning of dense prediction.
arXiv Detail & Related papers (2023-08-10T17:37:49Z) - Your Transformer May Not be as Powerful as You Expect [88.11364619182773]
We mathematically analyze the power of RPE-based Transformers regarding whether the model is capable of approximating any continuous sequence-to-sequence functions.
We present a negative result by showing there exist continuous sequence-to-sequence functions that RPE-based Transformers cannot approximate no matter how deep and wide the neural network is.
We develop a novel attention module, called Universal RPE-based (URPE) Attention, which satisfies the conditions.
arXiv Detail & Related papers (2022-05-26T14:51:30Z) - Multimodal Fusion Transformer for Remote Sensing Image Classification [35.57881383390397]
Vision transformers (ViTs) have been trending in image classification tasks due to their promising performance when compared to convolutional neural networks (CNNs)
To achieve satisfactory performance, close to that of CNNs, transformers need fewer parameters.
We introduce a new multimodal fusion transformer (MFT) network which comprises a multihead cross patch attention (mCrossPA) for HSI land-cover classification.
arXiv Detail & Related papers (2022-03-31T11:18:41Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
Recent vision transformers along with self-attention have achieved promising results on various computer vision tasks.
We introduce an effective hybrid architecture for super-resolution (SR) tasks, which leverages local features from CNNs and long-range dependencies captured by transformers.
Our proposed method achieves state-of-the-art SR results on numerous benchmark datasets.
arXiv Detail & Related papers (2022-03-15T06:52:25Z) - Visual Saliency Transformer [127.33678448761599]
We develop a novel unified model based on a pure transformer, Visual Saliency Transformer (VST), for both RGB and RGB-D salient object detection (SOD)
It takes image patches as inputs and leverages the transformer to propagate global contexts among image patches.
Experimental results show that our model outperforms existing state-of-the-art results on both RGB and RGB-D SOD benchmark datasets.
arXiv Detail & Related papers (2021-04-25T08:24:06Z) - TransMOT: Spatial-Temporal Graph Transformer for Multiple Object
Tracking [74.82415271960315]
We propose a solution named TransMOT to efficiently model the spatial and temporal interactions among objects in a video.
TransMOT is not only more computationally efficient than the traditional Transformer, but it also achieves better tracking accuracy.
The proposed method is evaluated on multiple benchmark datasets including MOT15, MOT16, MOT17, and MOT20.
arXiv Detail & Related papers (2021-04-01T01:49:05Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z) - Transformer Networks for Trajectory Forecasting [11.802437934289062]
We propose the novel use of Transformer Networks for trajectory forecasting.
This is a fundamental switch from the sequential step-by-step processing of LSTMs to the only-attention-based memory mechanisms of Transformers.
arXiv Detail & Related papers (2020-03-18T09:17:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.