論文の概要: Explainable Artificial Intelligence for Quantifying Interfering and High-Risk Behaviors in Autism Spectrum Disorder in a Real-World Classroom Environment Using Privacy-Preserving Video Analysis
- arxiv url: http://arxiv.org/abs/2407.21691v1
- Date: Wed, 31 Jul 2024 15:37:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 12:17:56.525277
- Title: Explainable Artificial Intelligence for Quantifying Interfering and High-Risk Behaviors in Autism Spectrum Disorder in a Real-World Classroom Environment Using Privacy-Preserving Video Analysis
- Title(参考訳): プライバシー保護ビデオ分析を用いた実世界授業環境における自閉症スペクトラム障害の干渉・高リスク行動の定量化のための説明可能な人工知能
- Authors: Barun Das, Conor Anderson, Tania Villavicencio, Johanna Lantz, Jenny Foster, Theresa Hamlin, Ali Bahrami Rad, Gari D. Clifford, Hyeokhyen Kwon,
- Abstract要約: ビデオに基づくグループ活動認識技術の最新技術は、実世界の活動におけるASDの振る舞いを定量化できることを示す。
説明可能なモデルは、77%のF1スコアで問題行動のエピソードを検出し、ASDの異なる種類の行動の特徴を捉えることができる。
- 参考スコア(独自算出の注目度): 2.286750720737624
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Rapid identification and accurate documentation of interfering and high-risk behaviors in ASD, such as aggression, self-injury, disruption, and restricted repetitive behaviors, are important in daily classroom environments for tracking intervention effectiveness and allocating appropriate resources to manage care needs. However, having a staff dedicated solely to observing is costly and uncommon in most educational settings. Recently, multiple research studies have explored developing automated, continuous, and objective tools using machine learning models to quantify behaviors in ASD. However, the majority of the work was conducted under a controlled environment and has not been validated for real-world conditions. In this work, we demonstrate that the latest advances in video-based group activity recognition techniques can quantify behaviors in ASD in real-world activities in classroom environments while preserving privacy. Our explainable model could detect the episode of problem behaviors with a 77% F1-score and capture distinctive behavior features in different types of behaviors in ASD. To the best of our knowledge, this is the first work that shows the promise of objectively quantifying behaviors in ASD in a real-world environment, which is an important step toward the development of a practical tool that can ease the burden of data collection for classroom staff.
- Abstract(参考訳): 攻撃性,自己傷害,破壊,制限された反復行動など,ASDにおける干渉行動と高リスク行動の迅速かつ正確な文書化は,介入効果の追跡とケアニーズ管理のための適切なリソース配分のために,日々の教室環境において重要である。
しかし、観察専用のスタッフを持つことは、ほとんどの教育現場では費用がかかり、珍しい。
近年, 機械学習モデルを用いた自動的, 連続的, 客観的ツールの開発について検討している。
しかし,研究の大部分は制御された環境下で行われ,実環境下での検証は行われていない。
本研究では,ビデオに基づくグループ行動認識技術の最新の進歩が,教室環境における実環境における行動におけるASDの行動の定量化に有効であることを実証する。
説明可能なモデルは、77%のF1スコアで問題行動のエピソードを検出し、ASDの異なる種類の行動の特徴を捉えることができる。
我々の知る限りでは、実際の環境でのASDにおける行動の客観的定量化の約束を示す最初の作品であり、教室職員のデータ収集の負担を軽減できる実用的なツールの開発に向けた重要なステップである。
関連論文リスト
- Federated Anomaly Detection for Early-Stage Diagnosis of Autism Spectrum Disorders using Serious Game Data [0.0]
本研究では,AutoEncoder-based Machine Learning (ML) 手法を用いて,ASD検出のための新しい半教師付きアプローチを提案する。
この目的に特化して設計された真剣なゲームを通じて手作業で収集したデータを利用する。
ゲーミフィケーションされたアプリケーションによって収集されたセンシティブなデータは、プライバシー漏洩の影響を受けやすいため、フェデレートラーニングフレームワークを開発した。
論文 参考訳(メタデータ) (2024-10-25T23:00:12Z) - Variable-Agnostic Causal Exploration for Reinforcement Learning [56.52768265734155]
強化学習のための新しいフレームワークVACERL(Variable-Agnostic Causal Exploration for Reinforcement Learning)を導入する。
本手法は,注目機構を用いて,重要変数に関連する重要な観測行動ステップを自動的に同定する。
これらのステップを接続する因果グラフを構築し、エージェントをタスク完了に対する因果的影響の大きい観察-作用ペアへと導く。
論文 参考訳(メタデータ) (2024-07-17T09:45:27Z) - Active Learning for Derivative-Based Global Sensitivity Analysis with Gaussian Processes [70.66864668709677]
高価なブラックボックス関数のグローバル感度解析におけるアクティブラーニングの問題点を考察する。
関数評価は高価であるため,最も価値の高い実験資源の優先順位付けにアクティブラーニングを利用する。
本稿では,デリバティブに基づくグローバル感度測定の重要量を直接対象とする,新たな能動的学習獲得関数を提案する。
論文 参考訳(メタデータ) (2024-07-13T01:41:12Z) - The Empirical Impact of Forgetting and Transfer in Continual Visual Odometry [4.704582238028159]
本研究は, ニューラルネットワークにおける破滅的記憶の影響と知識伝達の有効性を, 具体的環境下で連続的に学習したニューラルネットワークを用いて検討した。
環境間の高い伝達性を有する初期満足度性能を観察し,その後に特殊化相を呈する。
これらの知見は、生涯のロボット工学における適応と記憶保持のバランスをとることのオープンな課題を強調している。
論文 参考訳(メタデータ) (2024-06-03T21:32:50Z) - Localizing Moments of Actions in Untrimmed Videos of Infants with Autism Spectrum Disorder [5.2289135066938375]
乳児ビデオにおけるASD関連行動の同定を目的とした自己注意型TALモデルを提案する。
本研究は, 乳児の非トリミングビデオにおいて, エンド・ツー・エンドの時間的行動の局所化を初めて実施した症例である。
顔の70%の精度、顔の79%の精度、笑顔の72%、発声の65%を実現した。
論文 参考訳(メタデータ) (2024-04-08T20:31:27Z) - Comparison of Probabilistic Deep Learning Methods for Autism Detection [0.0]
自閉症スペクトラム障害(Autism Spectrum disorder、ASD)は、現在世界中で普及している神経発達障害の一つ。
この疾患の早期発見は、発症治療に役立ち、正常な生活を導くのに役立つ。
論文 参考訳(メタデータ) (2023-03-09T17:49:37Z) - Language-Assisted Deep Learning for Autistic Behaviors Recognition [13.200025637384897]
本稿では,視覚に基づく問題行動認識システムにおいて,従来の手法よりも高い精度で性能を向上できることを示す。
問題行動の種類毎に「自由利用」言語記述を取り入れた2分岐マルチモーダルディープラーニングフレームワークを提案する。
実験結果から,言語指導を付加することで,自閉症の行動認識タスクに明らかなパフォーマンス向上がもたらされることが示された。
論文 参考訳(メタデータ) (2022-11-17T02:58:55Z) - Learning Self-Modulating Attention in Continuous Time Space with
Applications to Sequential Recommendation [102.24108167002252]
本稿では,複雑で非線形に進化する動的ユーザの嗜好をモデル化する,自己変調型注意ネットワークを提案する。
提案手法がトップNシーケンシャルなレコメンデーションタスクに与える影響を実証的に示すとともに,3つの大規模実世界のデータセットによる結果から,我々のモデルが最先端のパフォーマンスを達成できることを示す。
論文 参考訳(メタデータ) (2022-03-30T03:54:11Z) - ACP++: Action Co-occurrence Priors for Human-Object Interaction
Detection [102.9428507180728]
ヒューマン・オブジェクト・インタラクション(HOI)検出のタスクにおける一般的な問題は、多数のHOIクラスが少数のラベル付き例しか持たないことである。
我々は、人間と物体の相互作用の間に自然の相関関係と反相関が存在することを観察した。
我々は、これらの先行知識を学習し、特に稀なクラスにおいて、より効果的な訓練に活用する手法を提案する。
論文 参考訳(メタデータ) (2021-09-09T06:02:50Z) - Detecting Human-Object Interactions with Action Co-occurrence Priors [108.31956827512376]
人-物間相互作用(HOI)検出タスクにおける一般的な問題は、多数のHOIクラスが少数のラベル付き例しか持たないことである。
我々は、人間と物体の相互作用の間に自然の相関と反相関が存在することを観察した。
我々はこれらの先行知識を学習し、特に稀なクラスにおいてより効果的な訓練に活用する手法を提案する。
論文 参考訳(メタデータ) (2020-07-17T02:47:45Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。