論文の概要: Localizing Moments of Actions in Untrimmed Videos of Infants with Autism Spectrum Disorder
- arxiv url: http://arxiv.org/abs/2404.05849v1
- Date: Mon, 8 Apr 2024 20:31:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 16:37:51.145492
- Title: Localizing Moments of Actions in Untrimmed Videos of Infants with Autism Spectrum Disorder
- Title(参考訳): 自閉症スペクトラム障害児の映像における行動の局所化
- Authors: Halil Ismail Helvaci, Sen-ching Samson Cheung, Chen-Nee Chuah, Sally Ozonoff,
- Abstract要約: 乳児ビデオにおけるASD関連行動の同定を目的とした自己注意型TALモデルを提案する。
本研究は, 乳児の非トリミングビデオにおいて, エンド・ツー・エンドの時間的行動の局所化を初めて実施した症例である。
顔の70%の精度、顔の79%の精度、笑顔の72%、発声の65%を実現した。
- 参考スコア(独自算出の注目度): 5.2289135066938375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autism Spectrum Disorder (ASD) presents significant challenges in early diagnosis and intervention, impacting children and their families. With prevalence rates rising, there is a critical need for accessible and efficient screening tools. Leveraging machine learning (ML) techniques, in particular Temporal Action Localization (TAL), holds promise for automating ASD screening. This paper introduces a self-attention based TAL model designed to identify ASD-related behaviors in infant videos. Unlike existing methods, our approach simplifies complex modeling and emphasizes efficiency, which is essential for practical deployment in real-world scenarios. Importantly, this work underscores the importance of developing computer vision methods capable of operating in naturilistic environments with little equipment control, addressing key challenges in ASD screening. This study is the first to conduct end-to-end temporal action localization in untrimmed videos of infants with ASD, offering promising avenues for early intervention and support. We report baseline results of behavior detection using our TAL model. We achieve 70% accuracy for look face, 79% accuracy for look object, 72% for smile and 65% for vocalization.
- Abstract(参考訳): 自閉症スペクトラム障害(ASD)は早期診断と介入において重大な課題を示し、子供とその家族に影響を与える。
頻度が上昇するにつれて、アクセス可能で効率的なスクリーニングツールが不可欠である。
機械学習(ML)技術の活用、特にTemporal Action Localization(TAL)は、ASDスクリーニングの自動化を約束している。
本稿では,乳児ビデオにおけるASD関連行動の同定を目的とした自己注意型TALモデルを提案する。
既存の手法とは異なり、我々の手法は複雑なモデリングを単純化し、現実のシナリオにおける実践的な展開に欠かせない効率を強調する。
重要なことは、この研究は、ASDスクリーニングにおける重要な課題に対処するため、設備制御の少ない自然環境で操作できるコンピュータビジョンの開発の重要性を浮き彫りにしている。
本研究は, 乳児の早期介入と支援の道筋として, 乳児の非トリミングビデオにおいて, エンド・ツー・エンドの時間的行動の局所化を初めて行ったものである。
本稿では,本モデルを用いた行動検出のベースライン結果について報告する。
顔の70%の精度、顔の79%の精度、笑顔の72%、発声の65%を実現した。
関連論文リスト
- Script-centric behavior understanding for assisted autism spectrum disorder diagnosis [6.198128116862245]
本研究は,コンピュータビジョン技術と大規模言語モデル(LLM)を用いて,自閉症スペクトラム障害(ASD)を自動的に検出することに焦点を当てる。
我々のパイプラインは、動画コンテンツを文字の振る舞いを記述したスクリプトに変換し、大きな言語モデルの一般化性を活用してゼロショットまたは少数ショットでSDを検出する。
平均年齢24か月の小児におけるASDの診断精度は92.00%であり,教師あり学習法の性能は3.58%以上である。
論文 参考訳(メタデータ) (2024-11-14T13:07:19Z) - Enhancing Autism Spectrum Disorder Early Detection with the Parent-Child Dyads Block-Play Protocol and an Attention-enhanced GCN-xLSTM Hybrid Deep Learning Framework [6.785167067600156]
本研究は,ASDと発達幼児を区別する行動パターンを識別するための,親子ダイズブロックプレイ(PCB)プロトコルを提案する。
40人のASDと89人のTD幼児が親とのブロックプレイに従事している。
このデータセットは、参加者の規模と個々のセッションの長さの両方に関する以前の取り組みを上回る。
論文 参考訳(メタデータ) (2024-08-29T21:53:01Z) - Ensemble Modeling of Multiple Physical Indicators to Dynamically Phenotype Autism Spectrum Disorder [3.6630139570443996]
自閉症スペクトラム障害(ASD)に関連する表現型マーカーを検出するためのコンピュータビジョンモデルをトレーニングするためのデータセットを提供する。
視線,頭位,顔のランドマークを入力として,LSTMを用いた個別モデルを訓練し,テストAUCは86%,67%,78%であった。
論文 参考訳(メタデータ) (2024-08-23T17:55:58Z) - Video-Based Autism Detection with Deep Learning [0.0]
感覚刺激に反応する子供の映像クリップを解析する深層学習モデルを開発した。
以上の結果から,本モデルは子どもの運動における重要な違いを効果的に一般化し,理解していることが明らかとなった。
論文 参考訳(メタデータ) (2024-02-26T17:45:00Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Language-Assisted Deep Learning for Autistic Behaviors Recognition [13.200025637384897]
本稿では,視覚に基づく問題行動認識システムにおいて,従来の手法よりも高い精度で性能を向上できることを示す。
問題行動の種類毎に「自由利用」言語記述を取り入れた2分岐マルチモーダルディープラーニングフレームワークを提案する。
実験結果から,言語指導を付加することで,自閉症の行動認識タスクに明らかなパフォーマンス向上がもたらされることが示された。
論文 参考訳(メタデータ) (2022-11-17T02:58:55Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
一般のコンピュータビジョンコミュニティでは,自己監視学習(SSL)手法が普及し始めている。
医学や手術など、より複雑で影響力のある領域におけるSSLメソッドの有効性は、限定的かつ未調査のままである。
外科的文脈理解,位相認識,ツール存在検出の2つの基本的なタスクに対して,これらの手法の性能をColec80データセット上で広範囲に解析する。
論文 参考訳(メタデータ) (2022-07-01T14:17:11Z) - One-shot action recognition towards novel assistive therapies [63.23654147345168]
この作業は、アクション模倣ゲームを含む医療療法の自動分析によって動機づけられます。
提案手法は、異種運動データ条件を標準化する前処理ステップを組み込んだものである。
自閉症者に対するセラピー支援のための自動ビデオ分析の実際の利用事例について検討した。
論文 参考訳(メタデータ) (2021-02-17T19:41:37Z) - Early Autism Spectrum Disorders Diagnosis Using Eye-Tracking Technology [62.997667081978825]
資金不足、資格のある専門家の欠如、そして修正方法に対する信頼度の低いことが、AMDのリアルタイム診断に影響を及ぼす主要な問題である。
我々のチームは、子どもの視線活動の情報に基づいて、ALDの確率を予測するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-08-21T20:22:55Z) - A Smartphone-based System for Real-time Early Childhood Caries Diagnosis [76.71303610807156]
6歳未満の小児では, 乳児期チャイナリー (ECC) が最も多いが, 予防可能な慢性疾患である。
本研究では,キャビティ検出のための多段階深層学習システムを提案する。
我々は、ディープラーニングシステムを、早期からECCを診断し、トレーニングされていないユーザにリアルタイムな結果を提供する、使い易いモバイルアプリケーションに統合する。
論文 参考訳(メタデータ) (2020-08-17T21:11:19Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。