Social Learning through Interactions with Other Agents: A Survey
- URL: http://arxiv.org/abs/2407.21713v2
- Date: Sun, 4 Aug 2024 03:08:24 GMT
- Title: Social Learning through Interactions with Other Agents: A Survey
- Authors: Dylan Hillier, Cheston Tan, Jing Jiang,
- Abstract summary: Social learning plays an important role in the development of human intelligence.
Recent advances in natural language processing (NLP) enable us to perform new forms of social learning.
We look at how behavioural cloning and next-token prediction mirror human imitation.
- Score: 10.080296323732863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social learning plays an important role in the development of human intelligence. As children, we imitate our parents' speech patterns until we are able to produce sounds; we learn from them praising us and scolding us; and as adults, we learn by working with others. In this work, we survey the degree to which this paradigm -- social learning -- has been mirrored in machine learning. In particular, since learning socially requires interacting with others, we are interested in how embodied agents can and have utilised these techniques. This is especially in light of the degree to which recent advances in natural language processing (NLP) enable us to perform new forms of social learning. We look at how behavioural cloning and next-token prediction mirror human imitation, how learning from human feedback mirrors human education, and how we can go further to enable fully communicative agents that learn from each other. We find that while individual social learning techniques have been used successfully, there has been little unifying work showing how to bring them together into socially embodied agents.
Related papers
- Learning mental states estimation through self-observation: a developmental synergy between intentions and beliefs representations in a deep-learning model of Theory of Mind [0.35154948148425685]
Theory of Mind (ToM) is the ability to attribute beliefs, intentions, or mental states to others.
We show a developmental synergy between learning to predict low-level mental states and attributing high-level ones.
We propose that our computational approach can inform the understanding of human social cognitive development.
arXiv Detail & Related papers (2024-07-25T13:15:25Z) - Bridging the Communication Gap: Artificial Agents Learning Sign Language through Imitation [6.1400257928108575]
This research explores acquiring non-verbal communication skills through learning from demonstrations.
In particular, we focus on imitation learning for artificial agents, exemplified by teaching a simulated humanoid American Sign Language.
We use computer vision and deep learning to extract information from videos, and reinforcement learning to enable the agent to replicate observed actions.
arXiv Detail & Related papers (2024-06-14T13:50:29Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
Building socially-intelligent AI agents (Social-AI) is a multidisciplinary, multimodal research goal.
We identify a set of underlying technical challenges and open questions for researchers across computing communities to advance Social-AI.
arXiv Detail & Related papers (2024-04-17T02:57:42Z) - SOTOPIA-$π$: Interactive Learning of Socially Intelligent Language Agents [73.35393511272791]
We propose an interactive learning method, SOTOPIA-$pi$, improving the social intelligence of language agents.
This method leverages behavior cloning and self-reinforcement training on filtered social interaction data according to large language model (LLM) ratings.
arXiv Detail & Related papers (2024-03-13T17:17:48Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
We present SOTOPIA, an open-ended environment to simulate complex social interactions between artificial agents and humans.
In our environment, agents role-play and interact under a wide variety of scenarios; they coordinate, collaborate, exchange, and compete with each other to achieve complex social goals.
We find that GPT-4 achieves a significantly lower goal completion rate than humans and struggles to exhibit social commonsense reasoning and strategic communication skills.
arXiv Detail & Related papers (2023-10-18T02:27:01Z) - Flexible social inference facilitates targeted social learning when
rewards are not observable [58.762004496858836]
Groups coordinate more effectively when individuals are able to learn from others' successes.
We suggest that social inference capacities may help bridge this gap, allowing individuals to update their beliefs about others' underlying knowledge and success from observable trajectories of behavior.
arXiv Detail & Related papers (2022-12-01T21:04:03Z) - Human Decision Makings on Curriculum Reinforcement Learning with
Difficulty Adjustment [52.07473934146584]
We guide the curriculum reinforcement learning results towards a preferred performance level that is neither too hard nor too easy via learning from the human decision process.
Our system is highly parallelizable, making it possible for a human to train large-scale reinforcement learning applications.
It shows reinforcement learning performance can successfully adjust in sync with the human desired difficulty level.
arXiv Detail & Related papers (2022-08-04T23:53:51Z) - Social Neuro AI: Social Interaction as the "dark matter" of AI [0.0]
We argue that empirical results from social psychology and social neuroscience along with the framework of dynamics can be of inspiration to the development of more intelligent artificial agents.
arXiv Detail & Related papers (2021-12-31T13:41:53Z) - SocialAI: Benchmarking Socio-Cognitive Abilities in Deep Reinforcement
Learning Agents [23.719833581321033]
Building embodied autonomous agents capable of participating in social interactions with humans is one of the main challenges in AI.
We argue that aiming towards human-level AI requires a broader set of key social skills.
We present SocialAI, a benchmark to assess the acquisition of social skills of DRL agents.
arXiv Detail & Related papers (2021-07-02T10:39:18Z) - Emergent Social Learning via Multi-agent Reinforcement Learning [91.57176641192771]
Social learning is a key component of human and animal intelligence.
This paper investigates whether independent reinforcement learning agents can learn to use social learning to improve their performance.
arXiv Detail & Related papers (2020-10-01T17:54:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.