Shadow Hamiltonian Simulation
- URL: http://arxiv.org/abs/2407.21775v2
- Date: Thu, 20 Feb 2025 22:30:53 GMT
- Title: Shadow Hamiltonian Simulation
- Authors: Rolando D. Somma, Robbie King, Robin Kothari, Thomas O'Brien, Ryan Babbush,
- Abstract summary: We present a different and novel approach to quantum simulation that uses a compressed quantum state that we call the shadow state''<n>The amplitudes of this shadow state are proportional to the time-dependent expectations of a specific set of operators of interest.<n>This evolution can be simulated on a quantum computer efficiently under broad conditions.
- Score: 1.420194426996621
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulating quantum dynamics is one of the most important applications of quantum computers. Traditional approaches for quantum simulation involve preparing the full evolved state of the system and then measuring some physical quantity. Here, we present a different and novel approach to quantum simulation that uses a compressed quantum state that we call the ``shadow state''. The amplitudes of this shadow state are proportional to the time-dependent expectations of a specific set of operators of interest, and it evolves according to its own Schr\"odinger equation. This evolution can be simulated on a quantum computer efficiently under broad conditions. Applications of this approach to quantum simulation problems include simulating the dynamics of exponentially large systems of free fermions or free bosons, the latter example recovering a recent algorithm for simulating exponentially many classical harmonic oscillators. These simulations are hard for classical methods and also for traditional quantum approaches, as preparing the full states would require exponential resources. Shadow Hamiltonian simulation can also be extended to simulate expectations of more complex operators such as two-time correlators or Green's functions, and to study the evolution of operators themselves in the Heisenberg picture.
Related papers
- Progress in Trapped-Ion Quantum Simulation [0.46873264197900916]
Trapped ions offer long coherence times and high fidelity, programmable quantum operations.
Digital (gate-based) quantum simulations exploit trapped-ion hardware capabilities.
arXiv Detail & Related papers (2024-09-04T18:00:02Z) - Simulating open quantum systems with giant atoms [0.0]
We introduce a simulator for open quantum many-body systems based on giant atoms, i.e., atoms (possibly artificial)
We first show that a simulator consisting of two giant atoms can simulate the dynamics of two coupled qubits.
We demonstrate and analyze the robustness of these simulation results against noise affecting the giant atoms.
arXiv Detail & Related papers (2024-06-19T16:31:42Z) - Simulation of open quantum systems on universal quantum computers [15.876768787615179]
We present an innovative and scalable method to simulate open quantum systems using quantum computers.
We define an adjoint density matrix as a counterpart of the true density matrix, which reduces to a mixed-unitary quantum channel.
accurate long-time simulation can also be achieved as the adjoint density matrix and the true dissipated one converges to the same state.
arXiv Detail & Related papers (2024-05-31T09:07:27Z) - Digital Quantum Simulations of Hong-Ou-Mandel Interference [0.26813152817733554]
We discuss the application of digital quantum simulations to simulate a bosonic system, a beam splitter.
We validated our quantum circuit that mimics the action of a beam splitter by simulating the Hong-Ou-Mandel interference experiment.
arXiv Detail & Related papers (2024-02-27T14:05:34Z) - Programmable quantum simulations on a trapped-ions quantum simulator with a global drive [0.0]
We experimentally demonstrate a method for quantum simulations on a small-scale trapped ions-based quantum simulator.
We measure the evolution of a quantum Ising ring and accurately reconstruct the Hamiltonian parameters, showcasing an accurate and high-fidelity simulation.
arXiv Detail & Related papers (2023-08-30T13:49:05Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Coherent-State Ladder Time-Dependent Variational Principle for Open
Quantum Systems [0.0]
We present a new paradigm for the dynamical simulation of interacting bosonic systems.
The method relies on a variational ansatz for the $n$-boson density matrix, in terms of a superposition of photon-added coherent states.
We test our method on several examples, demonstrating its potential application to the predictive simulation of interacting bosonic systems and cat qubits.
arXiv Detail & Related papers (2023-06-23T18:00:00Z) - Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics [3.2692763046599502]
Trapped-ion quantum systems may serve as a platform for the analog-quantum simulation of chemical dynamics.
To identify a 'quantum advantage' for these simulations, performance analysis of both analog-quantum simulation on noisy hardware and classical-digital algorithms is needed.
arXiv Detail & Related papers (2023-05-04T21:16:35Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Scalable Hamiltonian learning for large-scale out-of-equilibrium quantum
dynamics [0.0]
We present a scalable algorithm based on neural networks for Hamiltonian tomography in out-of-equilibrium quantum systems.
Specifically, we show that our algorithm is able to reconstruct the Hamiltonian of an arbitrary size quasi-1D bosonic system.
arXiv Detail & Related papers (2021-03-01T19:00:15Z) - Noisy intermediate scale quantum simulation of time dependent
Hamiltonians [0.0]
We extend the quantum assisted simulator to simulate the dynamics of a class of time-dependent Hamiltonians.
Our results indicate that quantum assisted simulator is a promising algorithm for current term quantum hardware.
arXiv Detail & Related papers (2021-01-19T15:20:03Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.