Replication in Visual Diffusion Models: A Survey and Outlook
- URL: http://arxiv.org/abs/2408.00001v1
- Date: Sun, 7 Jul 2024 06:39:16 GMT
- Title: Replication in Visual Diffusion Models: A Survey and Outlook
- Authors: Wenhao Wang, Yifan Sun, Zongxin Yang, Zhengdong Hu, Zhentao Tan, Yi Yang,
- Abstract summary: We provide the first comprehensive review of replication in visual diffusion models.
We analyze existing studies into unveiling, understanding, and mitigating this phenomenon.
By insights from diverse studies, this paper aims to equip researchers and practitioners with a deeper understanding at the intersection between AI technology and social good.
- Score: 39.23489433002511
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Visual diffusion models have revolutionized the field of creative AI, producing high-quality and diverse content. However, they inevitably memorize training images or videos, subsequently replicating their concepts, content, or styles during inference. This phenomenon raises significant concerns about privacy, security, and copyright within generated outputs. In this survey, we provide the first comprehensive review of replication in visual diffusion models, marking a novel contribution to the field by systematically categorizing the existing studies into unveiling, understanding, and mitigating this phenomenon. Specifically, unveiling mainly refers to the methods used to detect replication instances. Understanding involves analyzing the underlying mechanisms and factors that contribute to this phenomenon. Mitigation focuses on developing strategies to reduce or eliminate replication. Beyond these aspects, we also review papers focusing on its real-world influence. For instance, in the context of healthcare, replication is critically worrying due to privacy concerns related to patient data. Finally, the paper concludes with a discussion of the ongoing challenges, such as the difficulty in detecting and benchmarking replication, and outlines future directions including the development of more robust mitigation techniques. By synthesizing insights from diverse studies, this paper aims to equip researchers and practitioners with a deeper understanding at the intersection between AI technology and social good. We release this project at https://github.com/WangWenhao0716/Awesome-Diffusion-Replication.
Related papers
- The Cat and Mouse Game: The Ongoing Arms Race Between Diffusion Models and Detection Methods [0.0]
Diffusion models have transformed synthetic media generation, offering unmatched realism and control over content creation.
They can facilitate deepfakes, misinformation, and unauthorized reproduction of copyrighted material.
In response, the need for effective detection mechanisms has become increasingly urgent.
arXiv Detail & Related papers (2024-10-24T15:51:04Z) - A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends [67.43992456058541]
Image restoration (IR) refers to the process of improving visual quality of images while removing degradation, such as noise, blur, weather effects, and so on.
Traditional IR methods typically target specific types of degradation, which limits their effectiveness in real-world scenarios with complex distortions.
The all-in-one image restoration (AiOIR) paradigm has emerged, offering a unified framework that adeptly addresses multiple degradation types.
arXiv Detail & Related papers (2024-10-19T11:11:09Z) - Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
We introduce a straightforward yet effective method for detecting memorized prompts by inspecting the magnitude of text-conditional predictions.
Our proposed method seamlessly integrates without disrupting sampling algorithms, and delivers high accuracy even at the first generation step.
Building on our detection strategy, we unveil an explainable approach that shows the contribution of individual words or tokens to memorization.
arXiv Detail & Related papers (2024-07-31T16:13:29Z) - Frame by Familiar Frame: Understanding Replication in Video Diffusion Models [28.360705633967353]
Video generation poses greater challenges due to its higher-dimensional nature, the scarcity of training data, and the complex relationships involved.
Video diffusion models, which operate with even more constrained datasets, may be more prone to replicating samples from their training sets.
We present a systematic investigation into the phenomenon of sample replication in video diffusion models.
arXiv Detail & Related papers (2024-03-28T17:15:23Z) - Unveiling and Mitigating Memorization in Text-to-image Diffusion Models through Cross Attention [62.671435607043875]
Research indicates that text-to-image diffusion models replicate images from their training data, raising tremendous concerns about potential copyright infringement and privacy risks.
We reveal that during memorization, the cross-attention tends to focus disproportionately on the embeddings of specific tokens.
We introduce an innovative approach to detect and mitigate memorization in diffusion models.
arXiv Detail & Related papers (2024-03-17T01:27:00Z) - Detecting misinformation through Framing Theory: the Frame Element-based
Model [6.4618518529384765]
We focus on the nuanced manipulation of narrative frames - an under-explored area within the AI community.
We propose an innovative approach leveraging the power of pre-trained Large Language Models and deep neural networks to detect misinformation.
arXiv Detail & Related papers (2024-02-19T21:50:42Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
adversarial examples can manipulate machine learning models into making erroneous predictions.
The transferability of adversarial examples enables black-box attacks which circumvent the need for detailed knowledge of the target model.
This survey explores the landscape of the adversarial transferability of adversarial examples.
arXiv Detail & Related papers (2023-10-26T17:45:26Z) - The worst of both worlds: A comparative analysis of errors in learning
from data in psychology and machine learning [17.336655978572583]
Recent concerns that machine learning (ML) may be facing a misdiagnosis and replication crisis suggest that some published claims in ML research cannot be taken at face value.
A deeper understanding of what concerns in research in supervised ML have in common with the replication crisis in experimental science can put the new concerns in perspective.
arXiv Detail & Related papers (2022-03-12T18:26:24Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.