MIMNet: Multi-Interest Meta Network with Multi-Granularity Target-Guided Attention for Cross-domain Recommendation
- URL: http://arxiv.org/abs/2408.00038v1
- Date: Wed, 31 Jul 2024 13:30:34 GMT
- Title: MIMNet: Multi-Interest Meta Network with Multi-Granularity Target-Guided Attention for Cross-domain Recommendation
- Authors: Xiaofei Zhu, Yabo Yin, Li Wang,
- Abstract summary: Cross-domain recommendation (CDR) plays a critical role in alleviating the sparsity and cold-start problem.
We propose a novel method named Multi-interest Meta Network with Multi-granularity Target-guided Attention (MIMNet) for cross-domain recommendation.
- Score: 6.7902741961967
- License:
- Abstract: Cross-domain recommendation (CDR) plays a critical role in alleviating the sparsity and cold-start problem and substantially boosting the performance of recommender systems. Existing CDR methods prefer to either learn a common preference bridge shared by all users or a personalized preference bridge tailored for each user to transfer user preference from the source domain to the target domain. Although these methods significantly improve the recommendation performance, there are still some limitations. First, these methods usually assume a user only has a unique interest, while ignoring the fact that a user may interact with items with different interest preferences. Second, they learn transformed preference representation mainly relies on the source domain signals, while neglecting the rich information available in the target domain. To handle these issues, in this paper, we propose a novel method named Multi-interest Meta Network with Multi-granularity Target-guided Attention (MIMNet) for cross-domain recommendation. To be specific, we employ the capsule network to learn user multiple interests in the source domain, which will be fed into a meta network to generate multiple interest-level preference bridges. Then, we transfer user representations from the source domain to the target domain based on these multi-interest bridges. In addition, we introduce both fine-grained and coarse-grained target signals to aggregate user transformed interest-level representations by incorporating a novel multi-granularity target-guided attention network. We conduct extensive experimental results on three real-world CDR tasks, and the results show that our proposed approach MIMNet consistently outperforms all baseline methods. The source code of MIMNet is released at https://github.com/marqu22/MIMNet.
Related papers
- Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation [66.72195610471624]
Cross-Domain Sequential Recommendation aims to mine and transfer users' sequential preferences across different domains.
We propose a novel framework named URLLM, which aims to improve the CDSR performance by exploring the User Retrieval approach.
arXiv Detail & Related papers (2024-06-05T09:19:54Z) - Mixed Attention Network for Cross-domain Sequential Recommendation [63.983590953727386]
We propose a Mixed Attention Network (MAN) with local and global attention modules to extract the domain-specific and cross-domain information.
Experimental results on two real-world datasets demonstrate the superiority of our proposed model.
arXiv Detail & Related papers (2023-11-14T16:07:16Z) - Cross-domain recommendation via user interest alignment [20.387327479445773]
Cross-domain recommendation aims to leverage knowledge from multiple domains to alleviate the data sparsity and cold-start problems in traditional recommender systems.
The general practice of this approach is to train user embeddings in each domain separately and then aggregate them in a plain manner.
We propose a novel cross-domain recommendation framework, namely COAST, to improve recommendation performance on dual domains.
arXiv Detail & Related papers (2023-01-26T23:54:41Z) - Diverse Preference Augmentation with Multiple Domains for Cold-start
Recommendations [92.47380209981348]
We propose a Diverse Preference Augmentation framework with multiple source domains based on meta-learning.
We generate diverse ratings in a new domain of interest to handle overfitting on the case of sparse interactions.
These ratings are introduced into the meta-training procedure to learn a preference meta-learner, which produces good generalization ability.
arXiv Detail & Related papers (2022-04-01T10:10:50Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain generalizable (DG) person re-identification (ReID) aims to test across unseen domains without access to the target domain data at training time.
This paper presents a new approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID.
arXiv Detail & Related papers (2021-12-16T08:06:50Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
Two novel coupled autoencoder-based deep learning methods are proposed for cross-domain recommendation.
The first method aims to simultaneously learn a pair of autoencoders in order to reveal the intrinsic representations of the items in the source and target domains.
The second method is derived based on a new joint regularized optimization problem, which employs two autoencoders to generate in a deep and non-linear manner the user and item-latent factors.
arXiv Detail & Related papers (2021-12-08T15:14:26Z) - Transfer-Meta Framework for Cross-domain Recommendation to Cold-Start
Users [31.949188328354854]
Cross-domain recommendation (CDR) uses rich information from an auxiliary (source) domain to improve the performance of recommender system in the target domain.
We propose a transfer-meta framework for CDR (TMCDR) which has a transfer stage and a meta stage.
arXiv Detail & Related papers (2021-05-11T05:15:53Z) - CATN: Cross-Domain Recommendation for Cold-Start Users via Aspect
Transfer Network [49.35977893592626]
We propose a cross-domain recommendation framework via aspect transfer network for cold-start users (named CATN)
CATN is devised to extract multiple aspects for each user and each item from their review documents, and learn aspect correlations across domains with an attention mechanism.
On real-world datasets, the proposed CATN outperforms SOTA models significantly in terms of rating prediction accuracy.
arXiv Detail & Related papers (2020-05-21T10:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.