Transfer-Meta Framework for Cross-domain Recommendation to Cold-Start
Users
- URL: http://arxiv.org/abs/2105.04785v1
- Date: Tue, 11 May 2021 05:15:53 GMT
- Title: Transfer-Meta Framework for Cross-domain Recommendation to Cold-Start
Users
- Authors: Yongchun Zhu, Kaikai Ge, Fuzhen Zhuang, Ruobing Xie, Dongbo Xi, Xu
Zhang, Leyu Lin and Qing He
- Abstract summary: Cross-domain recommendation (CDR) uses rich information from an auxiliary (source) domain to improve the performance of recommender system in the target domain.
We propose a transfer-meta framework for CDR (TMCDR) which has a transfer stage and a meta stage.
- Score: 31.949188328354854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cold-start problems are enormous challenges in practical recommender systems.
One promising solution for this problem is cross-domain recommendation (CDR)
which leverages rich information from an auxiliary (source) domain to improve
the performance of recommender system in the target domain. In these CDR
approaches, the family of Embedding and Mapping methods for CDR (EMCDR) is very
effective, which explicitly learn a mapping function from source embeddings to
target embeddings with overlapping users. However, these approaches suffer from
one serious problem: the mapping function is only learned on limited
overlapping users, and the function would be biased to the limited overlapping
users, which leads to unsatisfying generalization ability and degrades the
performance on cold-start users in the target domain. With the advantage of
meta learning which has good generalization ability to novel tasks, we propose
a transfer-meta framework for CDR (TMCDR) which has a transfer stage and a meta
stage. In the transfer (pre-training) stage, a source model and a target model
are trained on source and target domains, respectively. In the meta stage, a
task-oriented meta network is learned to implicitly transform the user
embedding in the source domain to the target feature space. In addition, the
TMCDR is a general framework that can be applied upon various base models,
e.g., MF, BPR, CML. By utilizing data from Amazon and Douban, we conduct
extensive experiments on 6 cross-domain tasks to demonstrate the superior
performance and compatibility of TMCDR.
Related papers
- Sharpness-Aware Cross-Domain Recommendation to Cold-Start Users [29.229433535780153]
Cross-Domain Recommendation (CDR) is a promising paradigm inspired by transfer learning to solve the cold-start problem in recommender systems.
We propose a novel CDR method called Sharpness-Aware CDR (SCDR)
arXiv Detail & Related papers (2024-08-04T05:07:58Z) - MIMNet: Multi-Interest Meta Network with Multi-Granularity Target-Guided Attention for Cross-domain Recommendation [6.7902741961967]
Cross-domain recommendation (CDR) plays a critical role in alleviating the sparsity and cold-start problem.
We propose a novel method named Multi-interest Meta Network with Multi-granularity Target-guided Attention (MIMNet) for cross-domain recommendation.
arXiv Detail & Related papers (2024-07-31T13:30:34Z) - Heterogeneous Graph-based Framework with Disentangled Representations Learning for Multi-target Cross Domain Recommendation [7.247438542823219]
CDR (Cross-Domain Recommendation) is a critical solution to data sparsity problem in recommendation system.
We present HGDR (Heterogeneous Graph-based Framework with Disentangled Representations Learning), an end-to-end heterogeneous network architecture.
Experiments on real-world datasets and online A/B tests prove that our proposed model can transmit information among domains effectively.
arXiv Detail & Related papers (2024-07-01T02:27:54Z) - Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation [66.72195610471624]
Cross-Domain Sequential Recommendation aims to mine and transfer users' sequential preferences across different domains.
We propose a novel framework named URLLM, which aims to improve the CDSR performance by exploring the User Retrieval approach.
arXiv Detail & Related papers (2024-06-05T09:19:54Z) - Diffusion Cross-domain Recommendation [0.0]
We propose Diffusion Cross-domain Recommendation (DiffCDR) to give high-quality outcomes to cold-start users.
We first adopt the theory of DPM and design a Diffusion Module (DIM), which generates user's embedding in target domain.
In addition, we consider the label data of the target domain and form the task-oriented loss function, which enables our DiffCDR to adapt to specific tasks.
arXiv Detail & Related papers (2024-02-03T15:14:51Z) - CDR-Adapter: Learning Adapters to Dig Out More Transferring Ability for
Cross-Domain Recommendation Models [15.487701831604767]
Cross-domain recommendation (CDR) is a promising solution that utilizes knowledge from the source domain to improve the recommendation performance in the target domain.
Previous CDR approaches have mainly followed the Embedding and Mapping (EMCDR) framework, which involves learning a mapping function to facilitate knowledge transfer.
We present a scalable and efficient paradigm to address data sparsity and cold-start issues in CDR, named CDR-Adapter.
arXiv Detail & Related papers (2023-11-04T13:03:24Z) - Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation [84.82153655786183]
We propose a novel framework called Informative Data Mining (IDM) to enable efficient one-shot domain adaptation for semantic segmentation.
IDM provides an uncertainty-based selection criterion to identify the most informative samples, which facilitates quick adaptation and reduces redundant training.
Our approach outperforms existing methods and achieves a new state-of-the-art one-shot performance of 56.7%/55.4% on the GTA5/SYNTHIA to Cityscapes adaptation tasks.
arXiv Detail & Related papers (2023-09-25T15:56:01Z) - Diverse Preference Augmentation with Multiple Domains for Cold-start
Recommendations [92.47380209981348]
We propose a Diverse Preference Augmentation framework with multiple source domains based on meta-learning.
We generate diverse ratings in a new domain of interest to handle overfitting on the case of sparse interactions.
These ratings are introduced into the meta-training procedure to learn a preference meta-learner, which produces good generalization ability.
arXiv Detail & Related papers (2022-04-01T10:10:50Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain generalizable (DG) person re-identification (ReID) aims to test across unseen domains without access to the target domain data at training time.
This paper presents a new approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID.
arXiv Detail & Related papers (2021-12-16T08:06:50Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
Two novel coupled autoencoder-based deep learning methods are proposed for cross-domain recommendation.
The first method aims to simultaneously learn a pair of autoencoders in order to reveal the intrinsic representations of the items in the source and target domains.
The second method is derived based on a new joint regularized optimization problem, which employs two autoencoders to generate in a deep and non-linear manner the user and item-latent factors.
arXiv Detail & Related papers (2021-12-08T15:14:26Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.