論文の概要: Temporal Subspace Clustering for Molecular Dynamics Data
- arxiv url: http://arxiv.org/abs/2408.00056v1
- Date: Wed, 31 Jul 2024 17:13:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 00:27:00.049459
- Title: Temporal Subspace Clustering for Molecular Dynamics Data
- Title(参考訳): 分子動力学データの時空間クラスタリング
- Authors: Anna Beer, Martin Heinrigs, Claudia Plant, Ira Assent,
- Abstract要約: 分子動力学データのためのサブスペースクラスタリングであるMOSCITOを紹介する。
MOSCITOは,新しい1ステップ法で最先端の性能を実現する。
- 参考スコア(独自算出の注目度): 12.618818416522899
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce MOSCITO (MOlecular Dynamics Subspace Clustering with Temporal Observance), a subspace clustering for molecular dynamics data. MOSCITO groups those timesteps of a molecular dynamics trajectory together into clusters in which the molecule has similar conformations. In contrast to state-of-the-art methods, MOSCITO takes advantage of sequential relationships found in time series data. Unlike existing work, MOSCITO does not need a two-step procedure with tedious post-processing, but directly models essential properties of the data. Interpreting clusters as Markov states allows us to evaluate the clustering performance based on the resulting Markov state models. In experiments on 60 trajectories and 4 different proteins, we show that the performance of MOSCITO achieves state-of-the-art performance in a novel single-step method. Moreover, by modeling temporal aspects, MOSCITO obtains better segmentation of trajectories, especially for small numbers of clusters.
- Abstract(参考訳): 分子動力学データのためのサブスペースクラスタリングであるMOSCITO(MOlecular Dynamics Subspace Clustering with Temporal Observance)を紹介する。
MOSCITOは分子動力学軌道の時間ステップを、分子が類似した配座を持つクラスターにまとめる。
最先端の手法とは対照的に、MOSCITOは時系列データに見られるシーケンシャルな関係を利用する。
既存の作業とは異なり、MOSCITOは面倒な後処理を伴う2段階の手順を必要としないが、データの本質的な特性を直接モデル化する。
Markov状態としてクラスタを解釈することで、結果のMarkov状態モデルに基づいてクラスタリングのパフォーマンスを評価することができます。
60のトラジェクトリーと4つの異なるタンパク質の実験において、MOSCITOの性能は、新しい単一ステップ法で最先端のパフォーマンスを達成することを示す。
さらに、時間的側面をモデル化することにより、MOSCITOは、特に少数のクラスターに対して、軌道のより優れたセグメンテーションを得る。
関連論文リスト
- Graph Fourier Neural ODEs: Bridging Spatial and Temporal Multiscales in Molecular Dynamics [39.412937539709844]
分子動力学における空間的・時間的多スケール相互作用を共同でモデル化する新しい枠組みを提案する。
MD17データセット上で本モデルを評価し,最先端のベースラインに対して一貫した性能向上を示す。
論文 参考訳(メタデータ) (2024-11-03T15:10:48Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - Multi-Modality Spatio-Temporal Forecasting via Self-Supervised Learning [11.19088022423885]
そこで本稿では,MoSSL を利用した新しい学習フレームワークを提案する。
2つの実世界のMOSTデータセットの結果は、最先端のベースラインと比較して、我々のアプローチの優位性を検証する。
論文 参考訳(メタデータ) (2024-05-06T08:24:06Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
分子生成のための階層型テキスト変換法 (HI-Mol) を提案する。
HI-Molは分子分布を理解する上での階層的情報、例えば粗い特徴ときめ細かい特徴の重要性にインスパイアされている。
単一レベルトークン埋め込みを用いた画像領域の従来のテキストインバージョン法と比較して, マルチレベルトークン埋め込みにより, 基礎となる低ショット分子分布を効果的に学習することができる。
論文 参考訳(メタデータ) (2024-05-05T08:35:23Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Improving Molecular Properties Prediction Through Latent Space Fusion [9.912768918657354]
本稿では,最先端の化学モデルから導出した潜在空間を組み合わせた多視点手法を提案する。
分子構造をグラフとして表現するMHG-GNNの埋め込みと、化学言語に根ざしたMoLFormerの埋め込みである。
本稿では,既存の最先端手法と比較して,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-20T20:29:32Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - t-SMILES: A Scalable Fragment-based Molecular Representation Framework for De Novo Molecule Generation [9.116670221263753]
本研究では, t-SMILESと呼ばれる, フレキシブル, フラグメントベース, マルチスケールな分子表現フレームワークを提案する。
フラグメント化された分子グラフから生成された全二分木上で幅優先探索を行うことにより得られるSMILES型文字列を用いて分子を記述する。
従来のSMILES、DeepSMILES、SELFIES、ベースラインモデルをゴール指向タスクで大幅に上回っている。
論文 参考訳(メタデータ) (2023-01-04T21:41:01Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
モジュール構造とテンポラル構造の両方を同時に活用できる動的構造を利用するための一歩を踏み出します。
我々のモデルは利用可能なビューの数に対して堅牢であり、追加のトレーニングなしで新しいタスクに一般化できる。
論文 参考訳(メタデータ) (2020-07-13T17:44:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。