GOProteinGNN: Leveraging Protein Knowledge Graphs for Protein Representation Learning
- URL: http://arxiv.org/abs/2408.00057v1
- Date: Wed, 31 Jul 2024 17:54:22 GMT
- Title: GOProteinGNN: Leveraging Protein Knowledge Graphs for Protein Representation Learning
- Authors: Dan Kalifa, Uriel Singer, Kira Radinsky,
- Abstract summary: GOProteinGNN is a novel architecture that enhances protein language models by integrating protein knowledge graph information.
Our approach allows for the integration of information at both the individual amino acid level and the entire protein level, enabling a comprehensive and effective learning process.
- Score: 27.192150057715835
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Proteins play a vital role in biological processes and are indispensable for living organisms. Accurate representation of proteins is crucial, especially in drug development. Recently, there has been a notable increase in interest in utilizing machine learning and deep learning techniques for unsupervised learning of protein representations. However, these approaches often focus solely on the amino acid sequence of proteins and lack factual knowledge about proteins and their interactions, thus limiting their performance. In this study, we present GOProteinGNN, a novel architecture that enhances protein language models by integrating protein knowledge graph information during the creation of amino acid level representations. Our approach allows for the integration of information at both the individual amino acid level and the entire protein level, enabling a comprehensive and effective learning process through graph-based learning. By doing so, we can capture complex relationships and dependencies between proteins and their functional annotations, resulting in more robust and contextually enriched protein representations. Unlike previous fusion methods, GOProteinGNN uniquely learns the entire protein knowledge graph during training, which allows it to capture broader relational nuances and dependencies beyond mere triplets as done in previous work. We perform a comprehensive evaluation on several downstream tasks demonstrating that GOProteinGNN consistently outperforms previous methods, showcasing its effectiveness and establishing it as a state-of-the-art solution for protein representation learning.
Related papers
- Advanced atom-level representations for protein flexibility prediction utilizing graph neural networks [0.0]
We propose graph neural networks (GNNs) to learn protein representations at the atomic level and predict B-factors from protein 3D structures.
The Meta-GNN model achieves a correlation coefficient of 0.71 on a large and diverse test set of over 4k proteins.
arXiv Detail & Related papers (2024-08-22T16:15:13Z) - ProtT3: Protein-to-Text Generation for Text-based Protein Understanding [88.43323947543996]
Language Models (LMs) excel in understanding textual descriptions of proteins.
Protein Language Models (PLMs) can understand and convert protein data into high-quality representations, but struggle to process texts.
We introduce ProtT3, a framework for Protein-to-Text Generation for Text-based Protein Understanding.
arXiv Detail & Related papers (2024-05-21T08:06:13Z) - Beyond ESM2: Graph-Enhanced Protein Sequence Modeling with Efficient Clustering [24.415612744612773]
Proteins are essential to life's processes, underpinning evolution and diversity.
Advances in sequencing technology have revealed millions of proteins, underscoring the need for sophisticated pre-trained protein models for biological analysis and AI development.
Facebook's ESM2, the most advanced protein language model to date, leverages a masked prediction task for unsupervised learning, crafting amino acid representations with notable biochemical accuracy.
Yet, it lacks in delivering functional protein insights, signaling an opportunity for enhancing representation quality.
This study addresses this gap by incorporating protein family classification into ESM2's training, while a contextual prediction task fine-tunes local
arXiv Detail & Related papers (2024-04-24T11:09:43Z) - ProLLM: Protein Chain-of-Thoughts Enhanced LLM for Protein-Protein Interaction Prediction [54.132290875513405]
The prediction of protein-protein interactions (PPIs) is crucial for understanding biological functions and diseases.
Previous machine learning approaches to PPI prediction mainly focus on direct physical interactions.
We propose a novel framework ProLLM that employs an LLM tailored for PPI for the first time.
arXiv Detail & Related papers (2024-03-30T05:32:42Z) - NaNa and MiGu: Semantic Data Augmentation Techniques to Enhance Protein Classification in Graph Neural Networks [60.48306899271866]
We propose novel semantic data augmentation methods to incorporate backbone chemical and side-chain biophysical information into protein classification tasks.
Specifically, we leverage molecular biophysical, secondary structure, chemical bonds, andionic features of proteins to facilitate classification tasks.
arXiv Detail & Related papers (2024-03-21T13:27:57Z) - Enhancing Protein Predictive Models via Proteins Data Augmentation: A
Benchmark and New Directions [58.819567030843025]
This paper extends data augmentation techniques previously used for images and texts to proteins and then benchmarks these techniques on a variety of protein-related tasks.
We propose two novel semantic-level protein augmentation methods, namely Integrated Gradients Substitution and Back Translation Substitution.
Finally, we integrate extended and proposed augmentations into an augmentation pool and propose a simple but effective framework, namely Automated Protein Augmentation (APA)
arXiv Detail & Related papers (2024-03-01T07:58:29Z) - ProtLLM: An Interleaved Protein-Language LLM with Protein-as-Word Pre-Training [82.37346937497136]
We propose a versatile cross-modal large language model (LLM) for both protein-centric and protein-language tasks.
ProtLLM features a unique dynamic protein mounting mechanism, enabling it to handle complex inputs.
By developing a specialized protein vocabulary, we equip the model with the capability to predict not just natural language but also proteins from a vast pool of candidates.
arXiv Detail & Related papers (2024-02-28T01:29:55Z) - Multi-modal Protein Knowledge Graph Construction and Applications [30.500520131560112]
We create ProteinKG65, a knowledge graph for protein science.
Using gene ontology and Uniprot knowledge base as a basis, we transform various kinds of knowledge with aligned descriptions and protein sequences.
ProteinKG65 is mainly dedicated to providing a specialized protein knowledge graph, bringing the knowledge of Gene Ontology to protein function and structure prediction.
arXiv Detail & Related papers (2022-05-27T08:18:56Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
We propose a novel structure-aware protein self-supervised learning method to capture structural information of proteins.
In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information.
We identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme.
arXiv Detail & Related papers (2022-04-06T02:18:41Z) - OntoProtein: Protein Pretraining With Gene Ontology Embedding [36.92674447484136]
We propose OntoProtein, the first general framework that makes use of structure in GO (Gene Ontology) into protein pre-training models.
We construct a novel large-scale knowledge graph that consists of GO and its related proteins, and gene annotation texts or protein sequences describe all nodes in the graph.
arXiv Detail & Related papers (2022-01-23T14:49:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.