Persistent Topological Negativity in a High-Temperature Mixed-State
- URL: http://arxiv.org/abs/2408.00066v1
- Date: Wed, 31 Jul 2024 18:00:00 GMT
- Title: Persistent Topological Negativity in a High-Temperature Mixed-State
- Authors: Yonna Kim, Ali Lavasani, Sagar Vijay,
- Abstract summary: We study the entanglement structure of the Greenberger-Horne-Zeilinger (GHZ) state as it thermalizes under a strongly-symmetric quantum channel.
We show that the topological entanglement negativity of a large region is insensitive to this transition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the entanglement structure of the Greenberger-Horne-Zeilinger (GHZ) state as it thermalizes under a strongly-symmetric quantum channel describing the Metropolis-Hastings dynamics for the $d$-dimensional classical Ising model at inverse temperature $\beta$. This channel outputs the classical Gibbs state when acting on a product state in the computational basis. When applying this channel to a GHZ state in spatial dimension $d>1$, the resulting mixed state changes character at the Ising phase transition temperature from being long-range entangled to short-range-entangled as temperature increases. Nevertheless, we show that the topological entanglement negativity of a large region is insensitive to this transition and takes the same value as that of the pure GHZ state at any finite temperature $\beta>0$. We establish this result by devising a local operations and classical communication (LOCC) ``decoder" that provides matching lower and upper bounds on the negativity in the thermodynamic limit which may be of independent interest. This perspective connects the negativity to an error-correction problem on the $(d-1)$-dimensional bipartitioning surface and explains the persistent negativity in certain correlated noise models found in previous studies. Numerical results confirm our analysis.
Related papers
- Entanglement phase transition due to reciprocity breaking without
measurement or post-selection [59.63862802533879]
EPT occurs for a system undergoing purely unitary evolution.
We analytically derive the entanglement entropy out of and at the critical point for the $l=1$ and $l/N ll 1$ case.
arXiv Detail & Related papers (2023-08-28T14:28:59Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - New insights on the quantum-classical division in light of Collapse
Models [63.942632088208505]
We argue that the division between quantum and classical behaviors is analogous to the division of thermodynamic phases.
A specific relationship between the collapse parameter $(lambda)$ and the collapse length scale ($r_C$) plays the role of the coexistence curve in usual thermodynamic phase diagrams.
arXiv Detail & Related papers (2022-10-19T14:51:21Z) - Topological phase transitions at finite temperature [0.0]
We introduce two main aspects to the theory of mixed state topology.
First, we discover topological phase transitions as a function of the temperature T, manifesting as changes in winding number of the EGP accumulated over a closed loop in parameter space.
Second, we demonstrate that the EGP itself becomes quantized when key symmetries are present, allowing it to be viewed as a topological marker which can undergo equilibrium topological transitions at non-zero temperatures.
arXiv Detail & Related papers (2022-08-18T18:00:00Z) - Quantum critical behavior of entanglement in lattice bosons with
cavity-mediated long-range interactions [0.0]
We analyze the ground-state entanglement entropy of the extended Bose-Hubbard model with infinite-range interactions.
This model describes the low-energy dynamics of ultracold bosons tightly bound to an optical lattice and dispersively coupled to a cavity mode.
arXiv Detail & Related papers (2022-04-16T04:10:57Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Contrasting pseudo-criticality in the classical two-dimensional
Heisenberg and $\mathrm{RP}^2$ models: zero-temperature phase transition
versus finite-temperature crossover [0.0]
We compare the two-dimensional classical Heisenberg and $mathrmRP2$ models.
For the Heisenberg model, we find no signs of a finite-temperature phase transition.
For the $mathrmRP2$ model, we observe an abrupt onset of scaling behaviour.
arXiv Detail & Related papers (2022-02-15T17:35:15Z) - Probing the superfluid-insulator phase transition by a non-Hermitian
external field [0.0]
We study the response of a thermal state of the Hubbard-like system to either global or local non-Hermitian perturbations.
We show that the dynamical response of the system is strongly sensitive to the underlying quantum phase transition (QPT) from a Mott insulator to a superfluid state.
arXiv Detail & Related papers (2021-06-29T00:47:40Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Information scrambling at finite temperature in local quantum systems [0.0]
This paper investigates the temperature dependence of quantum information scrambling in local systems with an energy gap, $m$, above the ground state.
We study the speed and shape of growing Heisenberg operators as quantified by out-of-time-order correlators.
arXiv Detail & Related papers (2020-05-21T17:49:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.