論文の概要: Revisiting Monte Carlo Strength Evaluation
- arxiv url: http://arxiv.org/abs/2408.00124v1
- Date: Wed, 31 Jul 2024 19:26:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 22:25:51.420156
- Title: Revisiting Monte Carlo Strength Evaluation
- Title(参考訳): モンテカルロ強度評価の再検討
- Authors: Martin Stanek,
- Abstract要約: モンテカルロ法は、パスワード生成の確率モデル内でパスワードのランクを推定する。
推定の精度や速度を改善するためのいくつかのアイデアを提案する。
追加の事前計算により、メモリ使用量がわずかに増加し、より高速な推定が可能となる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Monte Carlo method, proposed by Dell'Amico and Filippone, estimates a password's rank within a probabilistic model for password generation, i.e., it determines the password's strength according to this model. We propose several ideas to improve the precision or speed of the estimation. Through experimental tests, we demonstrate that improved sampling can yield slightly better precision. Moreover, additional precomputation results in faster estimations with a modest increase in memory usage.
- Abstract(参考訳): Dell'AmicoとFilipponeによって提案されたモンテカルロ法は、パスワード生成の確率モデル内でパスワードのランクを推定する。
推定の精度や速度を改善するためのいくつかのアイデアを提案する。
実験により, 改良されたサンプリングにより, 精度がわずかに向上することを示した。
さらに、事前計算を追加すると、メモリ使用量がわずかに増加し、より高速な推定が可能になる。
関連論文リスト
- Graph-Structured Speculative Decoding [52.94367724136063]
投機的復号化は、大規模言語モデルの推論を加速する有望な手法として登場した。
本稿では, 有向非巡回グラフ(DAG)を応用して, 起案された仮説を管理する革新的な手法を提案する。
我々は1.73$times$から1.96$times$に顕著なスピードアップを観察し、標準投機的復号法を大幅に上回った。
論文 参考訳(メタデータ) (2024-07-23T06:21:24Z) - Deterministic Uncertainty Propagation for Improved Model-Based Offline Reinforcement Learning [12.490614705930676]
本稿では,ベルマン目標計算によって得られたモンテカルロ試料数に対する準最適性の強い依存性を示す理論的結果を示す。
我々の主な貢献は、進行モーメントマッチングを利用するベルマン目標に対する決定論的近似である。
我々は,既存のモンテカルロサンプリング手法よりもMOMBOの準最適性について,より厳密な保証を提供することが可能であることを示す。
論文 参考訳(メタデータ) (2024-06-06T13:58:41Z) - Accelerated Smoothing: A Scalable Approach to Randomized Smoothing [4.530339602471495]
本稿では,モンテカルロサンプリングを代理ニューラルネットワークのトレーニングに置き換える新しい手法を提案する。
提案手法はロバスト半径認定プロセスを大幅に加速し,600ドル近い改善が得られた。
論文 参考訳(メタデータ) (2024-02-12T09:07:54Z) - GliDe with a CaPE: A Low-Hassle Method to Accelerate Speculative
Decoding [81.01996600734616]
GliDe と CaPE を導入し,バニラ投機復号への2つの低ハードル修正を行った。
GliDeは、ターゲットのLLMからキャッシュされたキーと値を再利用する、修正されたドラフトモデルアーキテクチャである。
コード、データ、トレーニング済みのドラフトモデルをリリースします。
論文 参考訳(メタデータ) (2024-02-03T08:44:11Z) - ProBoost: a Boosting Method for Probabilistic Classifiers [55.970609838687864]
ProBoostは確率的分類器のための新しいブースティングアルゴリズムである。
各トレーニングサンプルの不確実性を使用して、最も困難で不確実なものを決定する。
これは、最も不確実性が高いと判明したサンプルに徐々に焦点をあてる配列を生成する。
論文 参考訳(メタデータ) (2022-09-04T12:49:20Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
PLモデルにおいて,より標本効率の高い予測値を生成するための新しい手法を開発した。
Amazon MusicのリアルなレコメンデーションデータとYahooの学習からランクへの挑戦を理論的にも実証的にも使用しています。
論文 参考訳(メタデータ) (2022-05-12T11:15:47Z) - Uncertainty-Aware Abstractive Summarization [3.1423034006764965]
ベイズ深層学習に基づく要約手法を提案する。
BARTとPEGの変動等価性は、複数のベンチマークデータセットで決定論的に比較した場合よりも優れていることを示す。
信頼性の高い不確実性尺度を持つことで、高い不確実性の生成された要約をフィルタリングすることにより、エンドユーザのエクスペリエンスを向上させることができる。
論文 参考訳(メタデータ) (2021-05-21T06:36:40Z) - Deep Bayesian Quadrature Policy Optimization [100.81242753620597]
ディープベイズ二次政策勾配 (Deep Bayesian quadrature Policy gradient, DBQPG) は、政策勾配推定のためのベイズ二次政策の高次元一般化である。
政策勾配法では,DBQPGがモンテカルロ推定を代用できることを示すとともに,一連の連続制御ベンチマーク上での有効性を示す。
論文 参考訳(メタデータ) (2020-06-28T15:44:47Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z) - Bayesian optimization for backpropagation in Monte-Carlo tree search [1.52292571922932]
バックプロパゲーション戦略を改善するための従来の試みを一般化した,Softmax MCTS と Monotone MCTS の2つの手法を提案する。
提案手法が従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-25T14:33:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。