論文の概要: S-SYNTH: Knowledge-Based, Synthetic Generation of Skin Images
- arxiv url: http://arxiv.org/abs/2408.00191v1
- Date: Wed, 31 Jul 2024 23:16:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 22:16:07.648492
- Title: S-SYNTH: Knowledge-Based, Synthetic Generation of Skin Images
- Title(参考訳): S-SYNTH:知識に基づく皮膚画像の合成生成
- Authors: Andrea Kim, Niloufar Saharkhiz, Elena Sizikova, Miguel Lago, Berkman Sahiner, Jana Delfino, Aldo Badano,
- Abstract要約: S-SYNTHは知識ベースで適応可能なオープンソーススキンシミュレーションフレームワークである。
我々は、解剖学的にインスパイアされた多層多層皮膚と成長する病変モデルを用いて、合成皮膚、3次元モデル、デジタル化された画像を生成する。
また, 合成データを用いて得られた結果は, 実際の皮膚画像と類似した傾向を示した。
- 参考スコア(独自算出の注目度): 2.79604239303318
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Development of artificial intelligence (AI) techniques in medical imaging requires access to large-scale and diverse datasets for training and evaluation. In dermatology, obtaining such datasets remains challenging due to significant variations in patient populations, illumination conditions, and acquisition system characteristics. In this work, we propose S-SYNTH, the first knowledge-based, adaptable open-source skin simulation framework to rapidly generate synthetic skin, 3D models and digitally rendered images, using an anatomically inspired multi-layer, multi-component skin and growing lesion model. The skin model allows for controlled variation in skin appearance, such as skin color, presence of hair, lesion shape, and blood fraction among other parameters. We use this framework to study the effect of possible variations on the development and evaluation of AI models for skin lesion segmentation, and show that results obtained using synthetic data follow similar comparative trends as real dermatologic images, while mitigating biases and limitations from existing datasets including small dataset size, lack of diversity, and underrepresentation.
- Abstract(参考訳): 医用画像における人工知能(AI)技術の開発には、訓練と評価のための大規模で多様なデータセットへのアクセスが必要である。
皮膚科では, 患者数, 照明条件, 取得システム特性が著しく異なるため, このようなデータセットの取得は依然として困難である。
本研究では,S-SYNTHを提案する。S-SYNTHは,合成皮膚,3Dモデル,デジタルレンダリング画像を高速に生成する,知識ベースで適応可能な初のオープンソーススキンシミュレーションフレームワークである。
皮膚モデルでは、皮膚の色、毛髪の存在、病変の形状、血液分画など、皮膚の外観の変化を制御できる。
この枠組みは, 皮膚病変のセグメンテーションのためのAIモデルの開発と評価に, 可能なバリエーションが与える影響について検討し, 合成データを用いて得られた結果は, 実際の皮膚画像と類似した傾向を辿りながら, データセットサイズ, 多様性の欠如, 表現不足など, 既存のデータセットからのバイアスや制限を軽減していることを示す。
関連論文リスト
- FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
拡散モデル (DM) は, 合成医用画像の生成において主要な手法となっているが, 臨界二倍偏差に悩まされている。
このようなバイアスを3段階のリサンプリング機構によって緩和する新しいDMフレームワークであるFairSkinを提案する。
本手法は, 画像の多様性と品質を著しく向上させ, 臨床環境における皮膚疾患の検出精度の向上に寄与する。
論文 参考訳(メタデータ) (2024-10-29T21:37:03Z) - Synthetic Generation of Dermatoscopic Images with GAN and Closed-Form Factorization [12.753792457271953]
本稿では,GAN(Generative Adversarial Network)ベースのモデルを活用する,革新的な教師なし拡張ソリューションを提案する。
セマンティックなバリエーションを取り入れた合成画像を作成し、これらの画像でトレーニングデータを拡張した。
皮膚病変分類において,機械学習モデルの性能を向上し,非アンサンブルモデルに新しいベンチマークを設定できた。
論文 参考訳(メタデータ) (2024-10-07T15:09:50Z) - Equitable Skin Disease Prediction Using Transfer Learning and Domain Adaptation [1.9505972437091028]
皮膚科学における既存の人工知能(AI)モデルは、様々な皮膚のトーンで病気を正確に診断する上で困難に直面している。
我々は、様々な画像領域からのリッチでトランスファー可能な知識を活かしたトランスファーラーニングアプローチを採用する。
あらゆる手法の中で、Med-ViTは様々な画像ソースから学んだ包括的な特徴表現のためにトップパフォーマーとして登場した。
論文 参考訳(メタデータ) (2024-09-01T23:48:26Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection [51.92255321684027]
皮膚のトーンと色差効果の相互作用について検討し,色差が皮膚のトーン間のモデル性能バイアスの新たな原因となる可能性が示唆された。
我々の研究は皮膚疾患の検出を改善するために皮膚科のAIに補完的な角度を提供する。
論文 参考訳(メタデータ) (2024-01-24T07:45:24Z) - Augmenting medical image classifiers with synthetic data from latent
diffusion models [12.077733447347592]
我々は,潜伏拡散モデルが皮膚疾患の画像を生成することを実証した。
我々は,複数の生成戦略を用いて生成した458,920個の合成画像の新しいデータセットを生成し,解析する。
論文 参考訳(メタデータ) (2023-08-23T22:34:49Z) - LesionAid: Vision Transformers-based Skin Lesion Generation and
Classification [0.0]
本研究では,ViTとViTGANに基づいて皮膚病変を分類する新しいマルチクラス予測フレームワークを提案する。
フレームワークは、ViTGAN、画像処理、説明可能なAIの4つの主要なフェーズで構成されている。
論文 参考訳(メタデータ) (2023-02-02T13:52:54Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - A Survey on Deep Learning for Skin Lesion Segmentation [32.523358996420846]
皮膚がんは、この一般的な疾患の負担を軽減するために、コンピュータ支援による診断の恩恵を受ける主要な公衆衛生問題である。
画像からの皮膚病変のセグメンテーションは、この目標を達成するための重要なステップである。
天然物や人工物(毛髪や気泡など)の存在、本質的要因(病変の形状やコントラストなど)、画像取得条件の変化により、皮膚病変のセグメンテーションは難しい課題となる。
論文 参考訳(メタデータ) (2022-06-01T09:43:10Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
本研究では,高画質,多彩で現実的な拡散重み付き磁気共鳴画像が深部生成モデルを用いて合成可能であることを示す。
Introspective Variational AutoencoderとStyle-Based GANの2つのネットワークを医療分野におけるデータ拡張の資格として提示する。
論文 参考訳(メタデータ) (2020-06-24T18:00:01Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。