論文の概要: Scaling and assigning resources on ion trap QCCD architectures
- arxiv url: http://arxiv.org/abs/2408.00225v1
- Date: Thu, 1 Aug 2024 01:35:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 21:55:12.820774
- Title: Scaling and assigning resources on ion trap QCCD architectures
- Title(参考訳): イオントラップQCCDアーキテクチャ上のリソースのスケーリングと割り当て
- Authors: Anabel Ovide, Daniele Cuomo, Carmen G. Almudever,
- Abstract要約: イオントラップ技術は量子情報処理の候補として大きな注目を集めている。
提案手法は,従来の手法と比較して最大50%の精度向上を図り,初期量子ビット配置に対する新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ion trap technologies have earned significant attention as potential candidates for quantum information processing due to their long decoherence times and precise manipulation of individual qubits, distinguishing them from other candidates in the field of quantum technologies. However, scalability remains a challenge, as introducing additional qubits into a trap increases noise and heating effects, consequently decreasing operational fidelity. Trapped-ion Quantum Charge-Coupled Device (QCCD) architectures have addressed this limitation by interconnecting multiple traps and employing ion shuttling mechanisms to transfer ions among traps. This new architectural design requires the development of novel compilation techniques for quantum algorithms, which efficiently allocate and route qubits, and schedule operations. The aim of a compiler is to minimize ion movements and, therefore, reduce the execution time of the circuit to achieve a higher fidelity. In this paper, we propose a novel approach for initial qubit placement, demonstrating enhancements of up to 50\% compared to prior methods. Furthermore, we conduct a scalability analysis on two distinct QCCD topologies: a 1D-linear array and a ring structure. Additionally, we evaluate the impact of the excess capacity -- i.e. the number of free spaces within a trap -- on the algorithm performance.
- Abstract(参考訳): イオントラップ技術は、長いデコヒーレンス時間と個々の量子ビットの正確な操作により量子情報処理の候補として大きな注目を集めており、量子技術分野の他の候補と区別されている。
しかし、トラップに追加の量子ビットを導入することでノイズや加熱効果が増加し、運用の忠実度が低下するなど、スケーラビリティは依然として課題である。
トラップ型量子電荷結合デバイス(QCCD)アーキテクチャは、複数のトラップを相互接続し、イオンをトラップ間で移動させるイオン遮断機構を採用することで、この制限に対処している。
この新しいアーキテクチャ設計では、量子ビットを効率よく割り当て、ルーティングし、スケジュール操作を行う量子アルゴリズムの新しいコンパイル技術を開発する必要がある。
コンパイラの目的は、イオンの動きを最小限に抑え、回路の実行時間を短縮し、高い忠実度を達成することである。
本稿では,従来の手法と比較して最大50倍の精度向上を図った,初期量子ビット配置のための新しい手法を提案する。
さらに、1次元線形アレイとリング構造という2つの異なるQCCDトポロジのスケーラビリティ解析を行う。
さらに,余剰容量(トラップ内の自由空間数)がアルゴリズム性能に与える影響を評価する。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Scaling Up the Quantum Divide and Conquer Algorithm for Combinatorial Optimization [0.8121127831316319]
本稿では,デバイス間通信コストを大幅に削減する量子回路の構築手法を提案する。
そこで本研究では,従来のQDCA手法の約3倍の大きさのトラクタブル回路を構築できることを示す。
論文 参考訳(メタデータ) (2024-05-01T20:49:50Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Shuttling for Scalable Trapped-Ion Quantum Computers [2.8956730787977083]
トラップイオン量子コンピュータの効率的なシャットリングスケジュールを提案する。
提案手法は、最小限の時間ステップでシャットリングスケジュールを生成する。
提案されたアプローチの実装は、オープンソースのミュンヘン量子ツールキットの一部として公開されている。
論文 参考訳(メタデータ) (2024-02-21T19:00:04Z) - Spatio-Temporal Characterization of Qubit Routing in
Connectivity-Constrained Quantum Processors [1.3230570759583702]
本研究は,3つのプロセッサトポロジ間の通信オーバーヘッドの比較分析を行った。
通信と計算の比率、平均量子ビットホットスポット性、時間的バーストネスのパフォーマンス指標によると、正方形格子配置は量子コンピュータアーキテクチャーのスケールで好適である。
論文 参考訳(メタデータ) (2024-02-01T10:16:04Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Using Boolean Satisfiability for Exact Shuttling in Trapped-Ion Quantum
Computers [3.1066111470235462]
トラップイオンはスケーラブルな量子コンピュータを構築するための有望な技術である。
本稿では, ブール充足性によるイオントラップの運動の形式化を提案する。
この形式化により、与えられた量子アルゴリズムとデバイスアーキテクチャに必要な最小の時間ステップを決定することができる。
論文 参考訳(メタデータ) (2023-11-06T19:00:22Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Integrated optical multi-ion quantum logic [4.771545115836015]
イオントラップデバイスに組み込まれた平面ファブリック光学は、そのようなシステムをより堅牢かつ並列化可能にする。
高忠実度マルチイオン量子論理ゲートを実現するために、表面電極イオントラップを併用したスケーラブル光学を用いている。
同様のデバイスは中性原子やイオンベースの量子センシングや時間管理にも応用できる。
論文 参考訳(メタデータ) (2020-02-06T13:52:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。