Enhanced Structured State Space Models via Grouped FIR Filtering and Attention Sink Mechanisms
- URL: http://arxiv.org/abs/2408.00244v1
- Date: Thu, 1 Aug 2024 02:49:58 GMT
- Title: Enhanced Structured State Space Models via Grouped FIR Filtering and Attention Sink Mechanisms
- Authors: Tian Meng, Yang Tao, Wuliang Yin,
- Abstract summary: We propose an advanced architecture that mitigates challenges by decomposing A-multiplications into multiple groups.
Inspired by the "attention sink" phenomenon identified in streaming language models, we incorporate a similar mechanism to enhance the stability and performance of our model.
- Score: 0.6718184400443239
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Structured State Space Models (SSMs) have emerged as compelling alternatives to Transformer architectures, offering linear-time complexity and superior performance in various sequence modeling tasks. Despite their advantages, SSMs like the original Mamba-2 face training difficulties due to the sensitivities introduced by the extended series of recurrent matrix multiplications. In this paper, we propose an advanced architecture that mitigates these challenges by decomposing A-multiplications into multiple groups and optimizing positional encoding through Grouped Finite Impulse Response (FIR) filtering. This new structure, denoted as Grouped FIR-enhanced SSM (GFSSM), employs semiseparable matrices for efficient computation. Furthermore, inspired by the "attention sink" phenomenon identified in streaming language models, we incorporate a similar mechanism to enhance the stability and performance of our model over extended sequences. Our approach further bridges the gap between SSMs and Transformer architectures, offering a viable path forward for scalable and high-performing sequence modeling.
Related papers
- Cliqueformer: Model-Based Optimization with Structured Transformers [102.55764949282906]
Large neural networks excel at prediction tasks, but their application to design problems, such as protein engineering or materials discovery, requires solving offline model-based optimization (MBO) problems.
We present Cliqueformer, a transformer-based architecture that learns the black-box function's structure through functional graphical models (FGM)
Across various domains, including chemical and genetic design tasks, Cliqueformer demonstrates superior performance compared to existing methods.
arXiv Detail & Related papers (2024-10-17T00:35:47Z) - TIMBA: Time series Imputation with Bi-directional Mamba Blocks and Diffusion models [0.0]
We propose replacing time-oriented Transformers with State-Space Models (SSM)
We develop a model that integrates SSM, Graph Neural Networks, and node-oriented Transformers to achieve enhanced representations.
arXiv Detail & Related papers (2024-10-08T11:10:06Z) - Longhorn: State Space Models are Amortized Online Learners [51.10124201221601]
State-space models (SSMs) offer linear decoding efficiency while maintaining parallelism during training.
In this work, we explore SSM design through the lens of online learning, conceptualizing SSMs as meta-modules for specific online learning problems.
We introduce a novel deep SSM architecture, Longhorn, whose update resembles the closed-form solution for solving the online associative recall problem.
arXiv Detail & Related papers (2024-07-19T11:12:08Z) - Binarized Diffusion Model for Image Super-Resolution [61.963833405167875]
Binarization, an ultra-compression algorithm, offers the potential for effectively accelerating advanced diffusion models (DMs)
Existing binarization methods result in significant performance degradation.
We introduce a novel binarized diffusion model, BI-DiffSR, for image SR.
arXiv Detail & Related papers (2024-06-09T10:30:25Z) - The Expressive Capacity of State Space Models: A Formal Language Perspective [0.8948475969696075]
recurrent models based on linear state space models (SSMs) have shown promising performance in language modeling (LM), competititve with transformers.
We present a comprehensive theoretical study of the capacity of such SSMs as it compares to that of transformers and traditional RNNs.
arXiv Detail & Related papers (2024-05-27T17:46:57Z) - Enhancing Transformer-based models for Long Sequence Time Series Forecasting via Structured Matrix [7.3758245014991255]
Self-attention mechanism as the core component of Transformer-based models exhibits great potential.
We propose a novel architectural framework that enhances Transformer-based models through the integration of Surrogate Attention Blocks (SAB) and Surrogate Feed-Forward Neural Network Blocks (SFB)
The framework reduces both time and space complexity by the replacement of the self-attention and feed-forward layers with SAB and SFB.
arXiv Detail & Related papers (2024-05-21T02:37:47Z) - State Space Models as Foundation Models: A Control Theoretic Overview [3.3222241150972356]
In recent years, there has been a growing interest in integrating linear state-space models (SSM) in deep neural network architectures.
This paper is intended as a gentle introduction to SSM-based architectures for control theorists.
It provides a systematic review of the most successful SSM proposals and highlights their main features from a control theoretic perspective.
arXiv Detail & Related papers (2024-03-25T16:10:47Z) - Block-State Transformers [41.57016890030355]
State space models (SSMs) have shown impressive results on tasks that require modeling long-range dependencies.
We propose a hybrid layer named Block-State Transformer (BST) that internally combines an SSM sublayer for long-range contextualization.
We show that our model outperforms similar Transformer-based architectures on language modeling perplexity and generalizes to longer sequences.
arXiv Detail & Related papers (2023-06-15T22:48:08Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - Analogous to Evolutionary Algorithm: Designing a Unified Sequence Model [58.17021225930069]
We explain the rationality of Vision Transformer by analogy with the proven practical Evolutionary Algorithm (EA)
We propose a more efficient EAT model, and design task-related heads to deal with different tasks more flexibly.
Our approach achieves state-of-the-art results on the ImageNet classification task compared with recent vision transformer works.
arXiv Detail & Related papers (2021-05-31T16:20:03Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.