論文の概要: Towards Scalable GPU-Accelerated SNN Training via Temporal Fusion
- arxiv url: http://arxiv.org/abs/2408.00280v1
- Date: Thu, 1 Aug 2024 04:41:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 21:45:24.449972
- Title: Towards Scalable GPU-Accelerated SNN Training via Temporal Fusion
- Title(参考訳): 時間融合によるスケーラブルGPU加速SNNトレーニングに向けて
- Authors: Yanchen Li, Jiachun Li, Kebin Sun, Luziwei Leng, Ran Cheng,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、人工知能の変革的発展として出現する。
SNNは、特別なスパース計算ハードウェア上で有望な効率を示すが、その実践訓練は、しばしば従来のGPUに依存している。
本稿では,GPUプラットフォーム上でのSNNの伝搬ダイナミクスを高速化する新しい時間融合法を提案する。
- 参考スコア(独自算出の注目度): 8.995682796140429
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drawing on the intricate structures of the brain, Spiking Neural Networks (SNNs) emerge as a transformative development in artificial intelligence, closely emulating the complex dynamics of biological neural networks. While SNNs show promising efficiency on specialized sparse-computational hardware, their practical training often relies on conventional GPUs. This reliance frequently leads to extended computation times when contrasted with traditional Artificial Neural Networks (ANNs), presenting significant hurdles for advancing SNN research. To navigate this challenge, we present a novel temporal fusion method, specifically designed to expedite the propagation dynamics of SNNs on GPU platforms, which serves as an enhancement to the current significant approaches for handling deep learning tasks with SNNs. This method underwent thorough validation through extensive experiments in both authentic training scenarios and idealized conditions, confirming its efficacy and adaptability for single and multi-GPU systems. Benchmarked against various existing SNN libraries/implementations, our method achieved accelerations ranging from $5\times$ to $40\times$ on NVIDIA A100 GPUs. Publicly available experimental codes can be found at https://github.com/EMI-Group/snn-temporal-fusion.
- Abstract(参考訳): 脳の複雑な構造に基づいて、スパイキングニューラルネットワーク(SNN)は人工知能の変革的発展として登場し、生物学的ニューラルネットワークの複雑なダイナミクスを密にエミュレートしている。
SNNは特別なスパース計算ハードウェア上で有望な効率を示すが、その実践訓練は従来のGPUに依存していることが多い。
この依存は、従来のニューラルネットワーク(ANN)とは対照的な計算時間を長くし、SNN研究を進める上で大きなハードルとなる。
この課題を克服するために,GPUプラットフォーム上でのSNNの伝播ダイナミクスを高速化する新しい時間融合法を提案する。
本手法は,一元的学習シナリオと理想的条件の両方において広範な実験を行い,一元的および多元的GPUシステムの有効性と適応性を確認した。
既存のSNNライブラリ/実装に対してベンチマークを行い,NVIDIA A100 GPU上で5\times$から40\times$までの高速化を実現した。
公開されている実験コードはhttps://github.com/EMI-Group/snn-temporal-fusionで見ることができる。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Spyx: A Library for Just-In-Time Compiled Optimization of Spiking Neural
Networks [0.08965418284317034]
Spiking Neural Networks(SNN)は、小さくて低消費電力なハードウェアフットプリントによるエネルギー効率の向上を提供する。
本稿では、JAXで設計された新しい軽量SNNシミュレーションおよび最適化ライブラリSpyxを紹介する。
論文 参考訳(メタデータ) (2024-02-29T09:46:44Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Energy-Efficient Deployment of Machine Learning Workloads on
Neuromorphic Hardware [0.11744028458220425]
ディープラーニングハードウェアアクセラレータがいくつかリリースされ、ディープニューラルネットワーク(DNN)が消費する電力と面積の削減に特化している。
個別の時系列データで動作するスパイクニューラルネットワーク(SNN)は、特殊なニューロモルフィックイベントベース/非同期ハードウェアにデプロイすると、大幅な電力削減を実現することが示されている。
本研究では,事前学習したDNNをSNNに変換するための一般的なガイドを提供するとともに,ニューロモルフィックハードウェア上でのSNNの展開を改善するためのテクニックも提示する。
論文 参考訳(メタデータ) (2022-10-10T20:27:19Z) - Training Spiking Neural Networks with Local Tandem Learning [96.32026780517097]
スパイキングニューラルネットワーク(SNN)は、前者よりも生物学的に可塑性でエネルギー効率が高いことが示されている。
本稿では,局所タンデム学習(Local Tandem Learning, LTL)と呼ばれる一般化学習規則を提案する。
CIFAR-10データセット上の5つのトレーニングエポック内に高速なネットワーク収束を示すとともに,計算複雑性が低い。
論文 参考訳(メタデータ) (2022-10-10T10:05:00Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Rethinking Pretraining as a Bridge from ANNs to SNNs [13.984523794353477]
スパイキングニューラルネットワーク(SNN)は、特有の特徴を持つ脳にインスパイアされた典型的なモデルとして知られている。
高い精度のモデルを得る方法は、常にSNNの分野における主要な課題である。
論文 参考訳(メタデータ) (2022-03-02T14:59:57Z) - A Time Encoding approach to training Spiking Neural Networks [3.655021726150368]
スパイキングニューラルネットワーク(SNN)の人気が高まっている。
本稿では、時間符号化理論を用いて、SNNの理解と学習を支援する余分なツールを提供する。
論文 参考訳(メタデータ) (2021-10-13T14:07:11Z) - Sparse Spiking Gradient Descent [2.741266294612776]
本稿では,従来の手法と同等あるいはより高精度なSNNバックプロパゲーションアルゴリズムを提案する。
本稿では,複雑性の異なる実データセットに対する本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-05-18T20:00:55Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。