論文の概要: Analysis of Indic Language Capabilities in LLMs
- arxiv url: http://arxiv.org/abs/2501.13912v1
- Date: Thu, 23 Jan 2025 18:49:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:58:24.792705
- Title: Analysis of Indic Language Capabilities in LLMs
- Title(参考訳): LLMにおけるインデックス言語機能の解析
- Authors: Aatman Vaidya, Tarunima Prabhakar, Denny George, Swair Shah,
- Abstract要約: 本報告では,テキスト入力による大規模言語モデル(LLM)の性能評価を行い,Indic言語を理解・生成する。
ヒンディー語はモデルの中で最も広く表現されている言語である。
モデルパフォーマンスは、上位5言語の話者数と大まかに相関するが、その後の評価は様々である。
- 参考スコア(独自算出の注目度): 0.3599866690398789
- License:
- Abstract: This report evaluates the performance of text-in text-out Large Language Models (LLMs) to understand and generate Indic languages. This evaluation is used to identify and prioritize Indic languages suited for inclusion in safety benchmarks. We conduct this study by reviewing existing evaluation studies and datasets; and a set of twenty-eight LLMs that support Indic languages. We analyze the LLMs on the basis of the training data, license for model and data, type of access and model developers. We also compare Indic language performance across evaluation datasets and find that significant performance disparities in performance across Indic languages. Hindi is the most widely represented language in models. While model performance roughly correlates with number of speakers for the top five languages, the assessment after that varies.
- Abstract(参考訳): 本報告では,テキスト入力による大規模言語モデル(LLM)の性能評価を行い,Indic言語を理解・生成する。
この評価は、安全ベンチマークに含めるのに適したIndic言語を特定し、優先順位付けするために使用される。
本研究は、既存の評価研究とデータセットをレビューし、Indic言語をサポートする28のLLMのセットについて検討する。
我々は、トレーニングデータ、モデルとデータのライセンス、アクセスの種類、モデル開発者に基づいてLCMを解析する。
また、評価データセット間でIndic言語のパフォーマンスを比較し、Indic言語間でのパフォーマンスに大きな違いがあることを見出した。
ヒンディー語はモデルの中で最も広く表現されている言語である。
モデルパフォーマンスは、上位5言語の話者数と大まかに相関するが、その後の評価は様々である。
関連論文リスト
- Evaluating Tokenizer Performance of Large Language Models Across Official Indian Languages [0.0]
本稿では,12の大規模言語モデル (LLM) が使用するトークンの包括的評価を行った。
SUTRAトークンライザは、いくつかのIndic特化モデルを含む他のモデルよりも優れており、14言語で優れている。
本研究は,多言語およびインデックス中心モデルを対象としたトークン化戦略の開発において重要であることを示す。
論文 参考訳(メタデータ) (2024-11-19T05:37:17Z) - L3Cube-IndicQuest: A Benchmark Question Answering Dataset for Evaluating Knowledge of LLMs in Indic Context [0.4194295877935868]
L3Cube-IndicQuestは,ゴールド標準の質問応答ベンチマークデータセットである。
データセットには200の質問応答ペアが含まれており、それぞれ英語と19のIndic言語に対応しており、Indicリージョン固有の5つのドメインを含んでいる。
論文 参考訳(メタデータ) (2024-09-13T10:48:35Z) - Navigating Text-to-Image Generative Bias across Indic Languages [53.92640848303192]
本研究ではインドで広く話されているIndic言語に対するテキスト・ツー・イメージ(TTI)モデルのバイアスについて検討する。
これらの言語における主要なTTIモデルの生成的パフォーマンスと文化的関連性を評価し,比較する。
論文 参考訳(メタデータ) (2024-08-01T04:56:13Z) - Language Ranker: A Metric for Quantifying LLM Performance Across High and Low-Resource Languages [48.40607157158246]
大規模言語モデル(LLM)は、英語、ドイツ語、フランス語のような高リソース言語で、低リソース言語の能力は依然として不十分である。
内部表現を用いたLLM性能に基づいて,言語をベンチマークし,ランク付けするための固有測度であるLanguage Rankerを提案する。
分析の結果,高リソース言語は英語との類似度が高く,性能が優れ,低リソース言語は類似度が低いことがわかった。
論文 参考訳(メタデータ) (2024-04-17T16:53:16Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットにおけるNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
私たちは122の言語変種にまたがるデータセットであるBelebeleを紹介します。
このデータセットは、高、中、低リソース言語におけるテキストモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-08-31T17:43:08Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - Vy\=akarana: A Colorless Green Benchmark for Syntactic Evaluation in
Indic Languages [0.0]
インジケート言語は、豊富なモーフィオシンタックス、文法的ジェンダー、自由な線形単語順序、および高インフレクション型形態学を有する。
Vy=akarana - 多言語言語モデルの構文評価のためのIndic言語における性別バランスの取れたカラーレスグリーン文のベンチマーク。
評価タスクから得られたデータセットを用いて、さまざまなアーキテクチャの5つの多言語言語モデルをIndic言語で調べる。
論文 参考訳(メタデータ) (2021-03-01T09:07:58Z) - XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating
Cross-lingual Generalization [128.37244072182506]
言語間TRansfer Evaluation of Multilinguals XTREMEは、40言語および9タスクにわたる多言語表現の言語間一般化能力を評価するためのベンチマークである。
我々は、英語でテストされたモデルは、多くのタスクにおいて人間のパフォーマンスに達するが、言語間変換されたモデルの性能にはまだ大きなギャップがあることを示した。
論文 参考訳(メタデータ) (2020-03-24T19:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。