"Patriarchy Hurts Men Too." Does Your Model Agree? A Discussion on Fairness Assumptions
- URL: http://arxiv.org/abs/2408.00330v1
- Date: Thu, 1 Aug 2024 07:06:30 GMT
- Title: "Patriarchy Hurts Men Too." Does Your Model Agree? A Discussion on Fairness Assumptions
- Authors: Marco Favier, Toon Calders,
- Abstract summary: In the context of group fairness, this approach often obscures implicit assumptions about how bias is introduced into the data.
We are assuming that the biasing process is a monotonic function of the fair scores, dependent solely on the sensitive attribute.
Either the behavior of the biasing process is more complex than mere monotonicity, which means we need to identify and reject our implicit assumptions.
- Score: 3.706222947143855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The pipeline of a fair ML practitioner is generally divided into three phases: 1) Selecting a fairness measure. 2) Choosing a model that minimizes this measure. 3) Maximizing the model's performance on the data. In the context of group fairness, this approach often obscures implicit assumptions about how bias is introduced into the data. For instance, in binary classification, it is often assumed that the best model, with equal fairness, is the one with better performance. However, this belief already imposes specific properties on the process that introduced bias. More precisely, we are already assuming that the biasing process is a monotonic function of the fair scores, dependent solely on the sensitive attribute. We formally prove this claim regarding several implicit fairness assumptions. This leads, in our view, to two possible conclusions: either the behavior of the biasing process is more complex than mere monotonicity, which means we need to identify and reject our implicit assumptions in order to develop models capable of tackling more complex situations; or the bias introduced in the data behaves predictably, implying that many of the developed models are superfluous.
Related papers
- Distributionally Generative Augmentation for Fair Facial Attribute Classification [69.97710556164698]
Facial Attribute Classification (FAC) holds substantial promise in widespread applications.
FAC models trained by traditional methodologies can be unfair by exhibiting accuracy inconsistencies across varied data subpopulations.
This work proposes a novel, generation-based two-stage framework to train a fair FAC model on biased data without additional annotation.
arXiv Detail & Related papers (2024-03-11T10:50:53Z) - Quantifying Bias in Text-to-Image Generative Models [49.60774626839712]
Bias in text-to-image (T2I) models can propagate unfair social representations and may be used to aggressively market ideas or push controversial agendas.
Existing T2I model bias evaluation methods only focus on social biases.
We propose an evaluation methodology to quantify general biases in T2I generative models, without any preconceived notions.
arXiv Detail & Related papers (2023-12-20T14:26:54Z) - How Far Can Fairness Constraints Help Recover From Biased Data? [9.430687114814997]
A general belief in fair classification is that fairness constraints incur a trade-off with accuracy, which biased data may worsen.
Contrary to this belief, Blum & Stangl show that fair classification with equal opportunity constraints even on extremely biased data can recover optimally accurate and fair classifiers on the original data distribution.
arXiv Detail & Related papers (2023-12-16T09:49:31Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
We show how to improve the fairness of Machine Learning models without altering the data or the learning algorithm.
We use a simple but key insight: the divergence of trends between different populations, and, consecutively, between a learned model and minority populations, is analogous to data drift.
We explore two strategies (model-splitting and reweighing) to resolve this drift, aiming to improve the overall conformance of models to the underlying data.
arXiv Detail & Related papers (2023-03-30T17:30:42Z) - Prisoners of Their Own Devices: How Models Induce Data Bias in
Performative Prediction [4.874780144224057]
A biased model can make decisions that disproportionately harm certain groups in society.
Much work has been devoted to measuring unfairness in static ML environments, but not in dynamic, performative prediction ones.
We propose a taxonomy to characterize bias in the data, and study cases where it is shaped by model behaviour.
arXiv Detail & Related papers (2022-06-27T10:56:04Z) - Don't Discard All the Biased Instances: Investigating a Core Assumption
in Dataset Bias Mitigation Techniques [19.252319300590656]
Existing techniques for mitigating dataset bias often leverage a biased model to identify biased instances.
The role of these biased instances is then reduced during the training of the main model to enhance its robustness to out-of-distribution data.
In this paper, we show that this assumption does not hold in general.
arXiv Detail & Related papers (2021-09-01T10:25:46Z) - A Generative Approach for Mitigating Structural Biases in Natural
Language Inference [24.44419010439227]
In this work, we reformulate the NLI task as a generative task, where a model is conditioned on the biased subset of the input and the label.
We show that this approach is highly robust to large amounts of bias.
We find that generative models are difficult to train and they generally perform worse than discriminative baselines.
arXiv Detail & Related papers (2021-08-31T17:59:45Z) - Why do classifier accuracies show linear trends under distribution
shift? [58.40438263312526]
accuracies of models on one data distribution are approximately linear functions of the accuracies on another distribution.
We assume the probability that two models agree in their predictions is higher than what we can infer from their accuracy levels alone.
We show that a linear trend must occur when evaluating models on two distributions unless the size of the distribution shift is large.
arXiv Detail & Related papers (2020-12-31T07:24:30Z) - UnQovering Stereotyping Biases via Underspecified Questions [68.81749777034409]
We present UNQOVER, a framework to probe and quantify biases through underspecified questions.
We show that a naive use of model scores can lead to incorrect bias estimates due to two forms of reasoning errors.
We use this metric to analyze four important classes of stereotypes: gender, nationality, ethnicity, and religion.
arXiv Detail & Related papers (2020-10-06T01:49:52Z) - Convex Fairness Constrained Model Using Causal Effect Estimators [6.414055487487486]
We devise novel models, called FairCEEs, which remove discrimination while keeping explanatory bias.
We provide an efficient algorithm for solving FairCEEs in regression and binary classification tasks.
arXiv Detail & Related papers (2020-02-16T03:40:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.