EXAONEPath 1.0 Patch-level Foundation Model for Pathology
- URL: http://arxiv.org/abs/2408.00380v3
- Date: Thu, 22 Aug 2024 05:07:18 GMT
- Title: EXAONEPath 1.0 Patch-level Foundation Model for Pathology
- Authors: Juseung Yun, Yi Hu, Jinhyung Kim, Jongseong Jang, Soonyoung Lee,
- Abstract summary: Features extracted from self-supervised models tend to cluster by individual whole slide images (WSIs)
We introduce EXAONEPath, a novel foundational model trained on patches that have undergone stain normalization.
We show that EXAONEPath achieves superior performance relative to the number of WSIs used and the model's parameter count.
- Score: 12.179645627327428
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advancements in digital pathology have led to the development of numerous foundational models that utilize self-supervised learning on patches extracted from gigapixel whole slide images (WSIs). While this approach leverages vast amounts of unlabeled data, we have discovered a significant issue: features extracted from these self-supervised models tend to cluster by individual WSIs, a phenomenon we term WSI-specific feature collapse. This problem can potentially limit the model's generalization ability and performance on various downstream tasks. To address this issue, we introduce EXAONEPath, a novel foundational model trained on patches that have undergone stain normalization. Stain normalization helps reduce color variability arising from different laboratories and scanners, enabling the model to learn more consistent features. EXAONEPath is trained using 285,153,903 patches extracted from a total of 34,795 WSIs. Our experiments demonstrate that EXAONEPath significantly mitigates the feature collapse problem, indicating that the model has learned more generalized features rather than overfitting to individual WSI characteristics. We compared EXAONEPath with state-of-the-art models across six downstream task datasets, and our results show that EXAONEPath achieves superior performance relative to the number of WSIs used and the model's parameter count. This suggests that the application of stain normalization has substantially improved the model's efficiency and generalization capabilities.
Related papers
- LiveXiv -- A Multi-Modal Live Benchmark Based on Arxiv Papers Content [62.816876067499415]
We propose LiveXiv: a scalable evolving live benchmark based on scientific ArXiv papers.
LiveXiv accesses domain-specific manuscripts at any given timestamp and proposes to automatically generate visual question-answer pairs.
We benchmark multiple open and proprietary Large Multi-modal Models (LMMs) on the first version of our benchmark, showing its challenging nature and exposing the models true abilities.
arXiv Detail & Related papers (2024-10-14T17:51:23Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - Enabling Small Models for Zero-Shot Classification through Model Label Learning [50.68074833512999]
We introduce a novel paradigm, Model Label Learning (MLL), which bridges the gap between models and their functionalities.
Experiments on seven real-world datasets validate the effectiveness and efficiency of MLL.
arXiv Detail & Related papers (2024-08-21T09:08:26Z) - cDP-MIL: Robust Multiple Instance Learning via Cascaded Dirichlet Process [23.266122629592807]
Multiple instance learning (MIL) has been extensively applied to whole slide histoparametric image (WSI) analysis.
The existing aggregation strategy in MIL, which primarily relies on the first-order distance between instances, fails to accurately approximate the true feature distribution of each instance.
We propose a new Bayesian nonparametric framework for multiple instance learning, which adopts a cascade of Dirichlet processes (cDP) to incorporate the instance-to-bag characteristic of the WSIs.
arXiv Detail & Related papers (2024-07-16T07:28:39Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Low-resource finetuning of foundation models beats state-of-the-art in
histopathology [3.4577420145036375]
We benchmark the most popular vision foundation models as feature extractors for histopathology data.
By finetuning a foundation model on a single GPU for only two hours or three days depending on the dataset, we can match or outperform state-of-the-art feature extractors.
This is a considerable shift from the current state, where only few institutions with large amounts of resources and datasets are able to train a feature extractor.
arXiv Detail & Related papers (2024-01-09T18:46:59Z) - The Importance of Downstream Networks in Digital Pathology Foundation Models [1.689369173057502]
We evaluate seven feature extractor models across three different datasets with 162 different aggregation model configurations.
We find that the performance of many current feature extractor models is notably similar.
arXiv Detail & Related papers (2023-11-29T16:54:25Z) - BROW: Better featuRes fOr Whole slide image based on self-distillation [19.295596638166536]
Whole slide image (WSI) processing is becoming part of the key components of standard clinical diagnosis for various diseases.
The performance of most WSI-related tasks relies on the efficacy of the backbone which extracts WSI patch feature representations.
We proposed BROW, a foundation model for extracting better feature representations for WSIs, which can be conveniently adapted to downstream tasks without or with slight fine-tuning.
arXiv Detail & Related papers (2023-09-15T09:11:09Z) - Studying How to Efficiently and Effectively Guide Models with Explanations [52.498055901649025]
'Model guidance' is the idea of regularizing the models' explanations to ensure that they are "right for the right reasons"
We conduct an in-depth evaluation across various loss functions, attribution methods, models, and 'guidance depths' on the PASCAL VOC 2007 and MS COCO 2014 datasets.
Specifically, we guide the models via bounding box annotations, which are much cheaper to obtain than the commonly used segmentation masks.
arXiv Detail & Related papers (2023-03-21T15:34:50Z) - Task-specific Fine-tuning via Variational Information Bottleneck for
Weakly-supervised Pathology Whole Slide Image Classification [10.243293283318415]
Multiple Instance Learning (MIL) has shown promising results in digital Pathology Whole Slide Image (WSI) classification.
We propose an efficient WSI fine-tuning framework motivated by the Information Bottleneck theory.
Our framework is evaluated on five pathology WSI datasets on various WSI heads.
arXiv Detail & Related papers (2023-03-15T08:41:57Z) - Exposing Shallow Heuristics of Relation Extraction Models with Challenge
Data [49.378860065474875]
We identify failure modes of SOTA relation extraction (RE) models trained on TACRED.
By adding some of the challenge data as training examples, the performance of the model improves.
arXiv Detail & Related papers (2020-10-07T21:17:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.