論文の概要: How quantum and evolutionary algorithms can help each other: two examples
- arxiv url: http://arxiv.org/abs/2408.00448v1
- Date: Thu, 1 Aug 2024 10:36:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 20:56:07.836989
- Title: How quantum and evolutionary algorithms can help each other: two examples
- Title(参考訳): 量子と進化のアルゴリズムが互いにどのように助け合うか:2つの例
- Authors: Shailendra Bhandari, Stefano Nichele, Sergiy Denysov, Pedro G. Lind,
- Abstract要約: 量子回路設計におけるバイオインスパイアされた進化的アルゴリズムの可能性について検討する。
我々は、異なる数の量子ゲートに対するセルオートマトンによる量子実装のロバスト性をテストする。
進化的アルゴリズムを用いて、マイヤー・ワラッハの絡み合い尺度で定義された適合関数に対して回路を最適化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the potential of bio-inspired evolutionary algorithms for designing quantum circuits with specific goals, focusing on two particular tasks. The first one is motivated by the ideas of Artificial Life that are used to reproduce stochastic cellular automata with given rules. We test the robustness of quantum implementations of the cellular automata for different numbers of quantum gates The second task deals with the sampling of quantum circuits that generate highly entangled quantum states, which constitute an important resource for quantum computing. In particular, an evolutionary algorithm is employed to optimize circuits with respect to a fitness function defined with the Mayer-Wallach entanglement measure. We demonstrate that, by balancing the mutation rate between exploration and exploitation, we can find entangling quantum circuits for up to five qubits. We also discuss the trade-off between the number of gates in quantum circuits and the computational costs of finding the gate arrangements leading to a strongly entangled state. Our findings provide additional insight into the trade-off between the complexity of a circuit and its performance, which is an important factor in the design of quantum circuits.
- Abstract(参考訳): 本稿では,2つの特定のタスクに焦点をあて,特定の目標を持つ量子回路を設計するためのバイオインスパイアされた進化的アルゴリズムの可能性について検討する。
最初のものは、確率的セルオートマトンを所定の規則で再現するために使用される人工生命のアイデアに動機付けられている。
異なる数の量子ゲートに対するセルオートマタの量子実装のロバスト性をテストする 第2のタスクは、量子コンピューティングの重要なリソースである高絡み合った量子状態を生成する量子回路のサンプリングを扱う。
特に、マイヤー・ワラッハの絡み合い尺度で定義される適合関数に関して、回路を最適化するために進化的アルゴリズムが用いられる。
探索と搾取の間の突然変異率のバランスをとることにより、最大5量子ビットの量子回路が絡み合っていることが実証された。
また、量子回路におけるゲート数のトレードオフと、ゲート配置が強い絡み合う状態につながることの計算コストについても論じる。
本研究は,量子回路の設計において重要な要素である回路の複雑さと性能とのトレードオフについて,さらなる知見を提供するものである。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Circuit Ansatz: Patterns of Abstraction and Reuse of Quantum Algorithm Design [3.8425905067219492]
本稿では,量子回路のアンサーゼを分類したカタログを提案する。
各アンザッツは、意図、モチベーション、適用性、回路図、実装、例などの詳細とともに記述される。
量子アルゴリズム設計におけるそれらの応用を説明するための実例が提供されている。
論文 参考訳(メタデータ) (2024-05-08T12:44:37Z) - Distributed quantum architecture search [0.0]
ニューラルネットワークにインスパイアされた変分量子アルゴリズムは、量子コンピューティングにおいて新しいアプローチとなっている。
量子アーキテクチャ探索は、ゲートパラメータとともに回路構造を調整することでこの問題に対処し、高性能回路構造を自動的に発見する。
そこで我々は,特定の量子ビット接続を伴う相互接続型量子処理ユニットのための分散量子回路構造を自動設計することを目的とした,エンドツーエンドの分散量子アーキテクチャ探索フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-10T13:28:56Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Monte Carlo Graph Search for Quantum Circuit Optimization [26.114550071165628]
本研究はモンテカルログラフ探索に基づく量子アーキテクチャ探索アルゴリズムと重要サンプリングの尺度を提案する。
これは、離散ゲートと連続変数を含むゲートの両方に対して、ゲートオーダーの最適化に適用できる。
論文 参考訳(メタデータ) (2023-07-14T14:01:25Z) - Parametric Synthesis of Computational Circuits for Complex Quantum
Algorithms [0.0]
我々の量子シンセサイザーの目的は、ユーザーが高レベルなコマンドを使って量子アルゴリズムを実装できるようにすることである。
量子アルゴリズムを実装するための提案手法は、機械学習の分野で潜在的に有効である。
論文 参考訳(メタデータ) (2022-09-20T06:25:47Z) - Variational quantum compiling with double Q-learning [0.37798600249187286]
強化学習(RL)に基づく変分量子コンパイル(VQC)アルゴリズムを提案する。
エージェントは、ネイティブゲートアルファベットとそれらが行う量子ビットから、二重Q学習によって順次量子ゲートを選択するように訓練される。
NISQデバイスのデコヒーレンスプロセスとゲートノイズによる量子アルゴリズムのエラーを減らすことができます。
論文 参考訳(メタデータ) (2021-03-22T06:46:35Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - Quantum walk processes in quantum devices [55.41644538483948]
グラフ上の量子ウォークを量子回路として表現する方法を研究する。
提案手法は,量子ウォークアルゴリズムを量子コンピュータ上で効率的に実装する方法である。
論文 参考訳(メタデータ) (2020-12-28T18:04:16Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。