A Systematic Review on Long-Tailed Learning
- URL: http://arxiv.org/abs/2408.00483v1
- Date: Thu, 1 Aug 2024 11:39:45 GMT
- Title: A Systematic Review on Long-Tailed Learning
- Authors: Chongsheng Zhang, George Almpanidis, Gaojuan Fan, Binquan Deng, Yanbo Zhang, Ji Liu, Aouaidjia Kamel, Paolo Soda, João Gama,
- Abstract summary: Long-tailed learning aims to build high-performance models on datasets with long-tailed distributions.
We propose a new taxonomy for long-tailed learning, which consists of eight different dimensions.
We present a systematic review of long-tailed learning methods, discussing their commonalities and alignable differences.
- Score: 12.122327726952946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-tailed data is a special type of multi-class imbalanced data with a very large amount of minority/tail classes that have a very significant combined influence. Long-tailed learning aims to build high-performance models on datasets with long-tailed distributions, which can identify all the classes with high accuracy, in particular the minority/tail classes. It is a cutting-edge research direction that has attracted a remarkable amount of research effort in the past few years. In this paper, we present a comprehensive survey of latest advances in long-tailed visual learning. We first propose a new taxonomy for long-tailed learning, which consists of eight different dimensions, including data balancing, neural architecture, feature enrichment, logits adjustment, loss function, bells and whistles, network optimization, and post hoc processing techniques. Based on our proposed taxonomy, we present a systematic review of long-tailed learning methods, discussing their commonalities and alignable differences. We also analyze the differences between imbalance learning and long-tailed learning approaches. Finally, we discuss prospects and future directions in this field.
Related papers
- Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - Towards Long-Tailed Recognition for Graph Classification via
Collaborative Experts [10.99232053983369]
We propose a novel long-tailed graph-level classification framework via Collaborative Multi-expert Learning (CoMe)
To equilibrate the contributions of head and tail classes, we first develop balanced contrastive learning from the view of representation learning.
We execute gated fusion and disentangled knowledge distillation among the multiple experts to promote the collaboration in a multi-expert framework.
arXiv Detail & Related papers (2023-08-31T10:12:32Z) - Propheter: Prophetic Teacher Guided Long-Tailed Distribution Learning [44.947984354108094]
We propose an innovative long-tailed learning paradigm that breaks the bottleneck by guiding the learning of deep networks with external prior knowledge.
The proposed prophetic paradigm acts as a promising solution to the challenge of limited class knowledge in long-tailed datasets.
arXiv Detail & Related papers (2023-04-09T02:02:19Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Constructing Balance from Imbalance for Long-tailed Image Recognition [50.6210415377178]
The imbalance between majority (head) classes and minority (tail) classes severely skews the data-driven deep neural networks.
Previous methods tackle with data imbalance from the viewpoints of data distribution, feature space, and model design.
We propose a concise paradigm by progressively adjusting label space and dividing the head classes and tail classes.
Our proposed model also provides a feature evaluation method and paves the way for long-tailed feature learning.
arXiv Detail & Related papers (2022-08-04T10:22:24Z) - A Survey on Long-Tailed Visual Recognition [13.138929184395423]
We focus on the problems caused by long-tailed data distribution, sort out the representative long-tailed visual recognition datasets and summarize some mainstream long-tailed studies.
Based on the Gini coefficient, we quantitatively study 20 widely-used and large-scale visual datasets proposed in the last decade.
arXiv Detail & Related papers (2022-05-27T06:22:55Z) - Deep Long-Tailed Learning: A Survey [163.16874896812885]
Deep long-tailed learning aims to train well-performing deep models from a large number of images that follow a long-tailed class distribution.
Long-tailed class imbalance is a common problem in practical visual recognition tasks.
This paper provides a comprehensive survey on recent advances in deep long-tailed learning.
arXiv Detail & Related papers (2021-10-09T15:25:22Z) - Relational Subsets Knowledge Distillation for Long-tailed Retinal
Diseases Recognition [65.77962788209103]
We propose class subset learning by dividing the long-tailed data into multiple class subsets according to prior knowledge.
It enforces the model to focus on learning the subset-specific knowledge.
The proposed framework proved to be effective for the long-tailed retinal diseases recognition task.
arXiv Detail & Related papers (2021-04-22T13:39:33Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.