論文の概要: To Change Or To Stick: Unveiling The Consistency Of Cyber Criminal Signatures Through Statistical Analysis
- arxiv url: http://arxiv.org/abs/2408.00499v1
- Date: Thu, 1 Aug 2024 12:08:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 20:46:24.429353
- Title: To Change Or To Stick: Unveiling The Consistency Of Cyber Criminal Signatures Through Statistical Analysis
- Title(参考訳): 統計分析でサイバー犯罪者の一貫性を解き明かす
- Authors: Ronan Mouchoux, François Moerman,
- Abstract要約: 本研究は,サイバー空間における犯罪署名の存在を明白に明らかにし,その存在を統計的証拠を通じて初めて検証した。
本研究は,サイバー攻撃における現時点の人間の行動理解における重要なギャップを埋める,先進的なサイバー犯罪に関連するユニークな署名の存在を検証するものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study unveils the elusive presence of criminal signatures in cyberspace, validating for the first time their existence through statistical evidence. By applying the A priori algorithm to the modus operandi of Advanced Persistent Threats, extracted from an extensive corpus of over 17,000 articles spanning 2007 to 2020, we highlight the enduring patterns leveraged by sophisticated cyber criminals. Our findings verify the existence of unique signatures associated with advanced cybercriminals, bridging a crucial gap in current understanding of human behavior in cyber-attacks. This pivotal research sets the foundation for an entirely new academic intersection in cybersecurity and computational criminology.
- Abstract(参考訳): 本研究は,サイバー空間における犯罪署名の存在を明白に明らかにし,その存在を統計的証拠を通じて初めて検証した。
2007年から2020年にかけての17,000以上の記事の広範なコーパスから抽出されたAdvanced Persistent ThreatsのModus OperandiにA prioriアルゴリズムを適用することで、高度なサイバー犯罪者が活用する永続的パターンを強調した。
本研究は,サイバー攻撃における現時点の人間の行動理解における重要なギャップを埋める,先進的なサイバー犯罪に関連するユニークな署名の存在を検証するものである。
この重要な研究は、サイバーセキュリティと計算犯罪学における全く新しい学術的交差点の基礎となる。
関連論文リスト
- 1D-CNN-IDS: 1D CNN-based Intrusion Detection System for IIoT [2.192061681117835]
本研究では,サイバー攻撃分類のための1次元畳み込みニューラルネットワーク (1DCNN) アルゴリズムを開発した。
提案された研究は9つのサイバー攻撃を分類するために99.90%の精度を達成した。
論文 参考訳(メタデータ) (2024-09-13T04:22:40Z) - Red Teaming Generative AI/NLP, the BB84 quantum cryptography protocol
and the NIST-approved Quantum-Resistant Cryptographic Algorithms [2.3020018305241337]
この研究は、AI/自然言語処理(NLP)モデルと量子暗号プロトコルのサイバーセキュリティへの影響について論じる。
この研究は、PythonとC++を主要な計算ツールとして利用し、潜在的なサイバー攻撃をシミュレートする"red teaming"アプローチを採用している。
この研究の目標は、デジタル世界が量子化されたオペレーションに移行するにつれて、AIによるサイバー脅威に対して回復力を維持することである。
論文 参考訳(メタデータ) (2023-09-17T00:59:14Z) - Recent Advancements in Machine Learning For Cybercrime Prediction [2.38324507743994]
本稿では,サイバー犯罪予測の最新動向を包括的に調査することを目的とする。
我々は150以上の研究論文をレビューし、最新の50件について検討した。
本稿では,最先端開発と公開データセットの全体像について述べる。
論文 参考訳(メタデータ) (2023-04-10T19:00:29Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Spatial-Temporal Hypergraph Self-Supervised Learning for Crime
Prediction [60.508960752148454]
本研究では,犯罪予測におけるラベル不足問題に対処する空間的ハイパーグラフ自己監視学習フレームワークを提案する。
都市空間全体における犯罪の地域的依存性をエンコードするクロスリージョンハイパーグラフ構造学習を提案する。
また,2段階の自己指導型学習パラダイムを設計し,局所的・世界的空間的犯罪パターンを共同で捉えるだけでなく,地域的自己差別の強化による疎犯罪表現を補う。
論文 参考訳(メタデータ) (2022-04-18T23:46:01Z) - Spatial-Temporal Sequential Hypergraph Network for Crime Prediction [56.41899180029119]
本稿では,複合犯罪の時空間パターンを包括的に符号化する時空間逐次ハイパーグラフネットワーク(ST-SHN)を提案する。
特に、長距離及びグローバルなコンテキスト下での時空間力学を扱うために、グラフ構造化されたメッセージパッシングアーキテクチャを設計する。
提案するST-SHNフレームワークは予測性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-01-07T12:46:50Z) - Profiling the Cybercriminal: A Systematic Review of Research [2.66512000865131]
サイバー犯罪者のプロファイリングに関する一般的な定義がない。
サイバー犯罪の主なタイプの1つはハッカーだ。
この記事では、その分野の最新の特徴化について述べる。
論文 参考訳(メタデータ) (2021-05-06T19:56:55Z) - Online Adversarial Attacks [57.448101834579624]
我々は、実世界のユースケースで見られる2つの重要な要素を強調し、オンライン敵攻撃問題を定式化する。
まず、オンライン脅威モデルの決定論的変種を厳格に分析する。
このアルゴリズムは、現在の最良の単一しきい値アルゴリズムよりも、$k=2$の競争率を確実に向上させる。
論文 参考訳(メタデータ) (2021-03-02T20:36:04Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。