The Monetisation of Toxicity: Analysing YouTube Content Creators and Controversy-Driven Engagement
- URL: http://arxiv.org/abs/2408.00534v1
- Date: Thu, 1 Aug 2024 13:10:35 GMT
- Title: The Monetisation of Toxicity: Analysing YouTube Content Creators and Controversy-Driven Engagement
- Authors: Thales Bertaglia, Catalina Goanta, Adriana Iamnitchi,
- Abstract summary: This paper presents a quantitative analysis of controversial content on YouTube, focusing on the relationship between controversy, toxicity, and monetisation.
We introduce a curated dataset comprising 20 controversial YouTube channels extracted from Reddit discussions, including 16,349 videos and more than 105 million comments.
We identify and categorise monetisation cues from video descriptions into various models, including affiliate marketing and direct selling.
Our findings reveal that while toxic comments correlate with higher engagement, they negatively impact monetisation, indicating that controversy-driven interaction does not necessarily lead to financial gain.
- Score: 1.3108652488669736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: YouTube is a major social media platform that plays a significant role in digital culture, with content creators at its core. These creators often engage in controversial behaviour to drive engagement, which can foster toxicity. This paper presents a quantitative analysis of controversial content on YouTube, focusing on the relationship between controversy, toxicity, and monetisation. We introduce a curated dataset comprising 20 controversial YouTube channels extracted from Reddit discussions, including 16,349 videos and more than 105 million comments. We identify and categorise monetisation cues from video descriptions into various models, including affiliate marketing and direct selling, using lists of URLs and keywords. Additionally, we train a machine learning model to measure the toxicity of comments in these videos. Our findings reveal that while toxic comments correlate with higher engagement, they negatively impact monetisation, indicating that controversy-driven interaction does not necessarily lead to financial gain. We also observed significant variation in monetisation strategies, with some creators showing extensive monetisation despite high toxicity levels. Our study introduces a curated dataset, lists of URLs and keywords to categorise monetisation, a machine learning model to measure toxicity, and is a significant step towards understanding the complex relationship between controversy, engagement, and monetisation on YouTube. The lists used for detecting and categorising monetisation cues are available on https://github.com/thalesbertaglia/toxmon.
Related papers
- ToxVidLM: A Multimodal Framework for Toxicity Detection in Code-Mixed Videos [46.148023197749396]
ToxVidLM incorporates three key modules - the multimodal module, Cross-Modal Synchronization module, and Multitask module.
This paper introduces a benchmark dataset consisting of 931 videos with 4021 code-mixed Hindi-English utterances collected from YouTube.
arXiv Detail & Related papers (2024-05-31T05:40:56Z) - Detecting Suspicious Commenter Mob Behaviors on YouTube Using Graph2Vec [1.1371889042789218]
This paper presents a social network analysis-based methodology for detecting suspicious commenter mob-like behaviors among YouTube channels.
The method aims to characterize channels based on the level of such behavior and identify com-mon patterns across them.
The analysis revealed significant similarities among the channels, shedding light on the prevalence of suspicious commenter behavior.
arXiv Detail & Related papers (2023-11-09T23:49:29Z) - Twits, Toxic Tweets, and Tribal Tendencies: Trends in Politically Polarized Posts on Twitter [5.161088104035108]
We explore the role that partisanship and affective polarization play in contributing to toxicity on an individual level and a topic level on Twitter/X.
After collecting 89.6 million tweets from 43,151 Twitter/X users, we determine how several account-level characteristics, including partisanship, predict how often users post toxic content.
arXiv Detail & Related papers (2023-07-19T17:24:47Z) - Micro-video Tagging via Jointly Modeling Social Influence and Tag
Relation [56.23157334014773]
85.7% of micro-videos lack annotation.
Existing methods mostly focus on analyzing video content, neglecting users' social influence and tag relation.
We formulate micro-video tagging as a link prediction problem in a constructed heterogeneous network.
arXiv Detail & Related papers (2023-03-15T02:13:34Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems.
This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content.
arXiv Detail & Related papers (2022-12-27T16:08:49Z) - Modeling Content Creator Incentives on Algorithm-Curated Platforms [76.53541575455978]
We study how algorithmic choices affect the existence and character of (Nash) equilibria in exposure games.
We propose tools for numerically finding equilibria in exposure games, and illustrate results of an audit on the MovieLens and LastFM datasets.
arXiv Detail & Related papers (2022-06-27T08:16:59Z) - Conspiracy Brokers: Understanding the Monetization of YouTube Conspiracy
Theories [8.416017904031792]
We collect 184,218 ad impressions from 6,347 unique advertisers found on conspiracy-focused channels and mainstream YouTube content.
In comparison with mainstream content, conspiracy videos had similar levels of ads from well-known brands, but an almost eleven times higher prevalence of likely predatory or deceptive ads.
arXiv Detail & Related papers (2022-05-31T16:42:52Z) - Annotators with Attitudes: How Annotator Beliefs And Identities Bias
Toxic Language Detection [75.54119209776894]
We investigate the effect of annotator identities (who) and beliefs (why) on toxic language annotations.
We consider posts with three characteristics: anti-Black language, African American English dialect, and vulgarity.
Our results show strong associations between annotator identity and beliefs and their ratings of toxicity.
arXiv Detail & Related papers (2021-11-15T18:58:20Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Online Hate: Behavioural Dynamics and Relationship with Misinformation [0.0]
We perform hate speech detection on a corpus of more than one million comments on YouTube videos.
Our results show that, coherently with Godwin's law, online debates tend to degenerate towards increasingly toxic exchanges of views.
arXiv Detail & Related papers (2021-05-28T17:30:51Z) - Characterizing Abhorrent, Misinformative, and Mistargeted Content on
YouTube [1.9138099871648453]
We study the degree of problematic content on YouTube and the role of the recommendation algorithm in the dissemination of such content.
Our analysis reveals that young children are likely to encounter disturbing content when they randomly browse the platform.
We find that Incel activity is increasing over time and that platforms may play an active role in steering users towards extreme content.
arXiv Detail & Related papers (2021-05-20T15:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.