End-to-End Protocol for High-Quality QAOA Parameters with Few Shots
- URL: http://arxiv.org/abs/2408.00557v3
- Date: Thu, 10 Oct 2024 20:18:41 GMT
- Title: End-to-End Protocol for High-Quality QAOA Parameters with Few Shots
- Authors: Tianyi Hao, Zichang He, Ruslan Shaydulin, Jeffrey Larson, Marco Pistoia,
- Abstract summary: We develop an end-to-end protocol that combines multiple parameter settings and fine-tuning techniques.
We implement a trapped-ion processor using up to 32 qubits and 5 QAOA layers.
We demonstrate that the pipeline is robust to small amounts of hardware noise.
- Score: 2.906880059847219
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The quantum approximate optimization algorithm (QAOA) is a quantum heuristic for combinatorial optimization that has been demonstrated to scale better than state-of-the-art classical solvers for some problems. For a given problem instance, QAOA performance depends crucially on the choice of the parameters. While average-case optimal parameters are available in many cases, meaningful performance gains can be obtained by fine-tuning these parameters for a given instance. This task is especially challenging, however, when the number of circuit executions (shots) is limited. In this work, we develop an end-to-end protocol that combines multiple parameter settings and fine-tuning techniques. We use large-scale numerical experiments to optimize the protocol for the shot-limited setting and observe that optimizers with the simplest internal model (linear) perform best. We implement the optimized pipeline on a trapped-ion processor using up to 32 qubits and 5 QAOA layers, and we demonstrate that the pipeline is robust to small amounts of hardware noise. To the best of our knowledge, these are the largest demonstrations of QAOA parameter fine-tuning on a trapped-ion processor in terms of 2-qubit gate count.
Related papers
- Parameter Setting Heuristics Make the Quantum Approximate Optimization Algorithm Suitable for the Early Fault-Tolerant Era [3.734751161717204]
Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising quantum optimizations.
Recent advances in parameter setting in QAOA make EFTQC experiments with QAOA practically viable.
arXiv Detail & Related papers (2024-08-18T16:48:14Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
We propose a new perspective on parameterization by investigating a key assumption in prior work.
Our empirical investigation includes tens of thousands of models trained with all combinations of threes.
We find that the best learning rate scaling prescription would often have been excluded by the assumptions in prior work.
arXiv Detail & Related papers (2024-07-08T12:32:51Z) - Linearly simplified QAOA parameters and transferability [0.6834295298053009]
Quantum Approximate Algorithm Optimization (QAOA) provides a way to solve optimization problems using quantum computers.
We present some numerical results that are obtained for instances of the random Ising model and of the max-cut problem.
arXiv Detail & Related papers (2024-05-01T17:34:32Z) - Transfer learning of optimal QAOA parameters in combinatorial
optimization [0.46040036610482665]
We study the transfer learning (TL) methodology to reuse pre-trained QAOA parameters of one problem instance into different COP instances.
In this work, we select small cases of the traveling salesman problem (TSP), the bin packing problem (BPP), the knapsack problem (KP), the weighted maximum cut (MaxCut) problem, and portfolio optimization (PO)
We show that cross-platform TL is possible using the D-Wave Advantage quantum annealer with the parameters found for BPP.
arXiv Detail & Related papers (2024-02-08T10:35:23Z) - Graph Representation Learning for Parameter Transferability in Quantum Approximate Optimization Algorithm [1.0971022294548696]
The quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced optimization.
In this work, we apply five different graph embedding techniques to determine good donor candidates for parameter transferability.
Using this technique, we effectively reduce the number of iterations required for parameter optimization, obtaining an approximate solution to the target problem with an order of magnitude speedup.
arXiv Detail & Related papers (2024-01-12T16:01:53Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
Our algorithm, called AQLM, generalizes the classic Additive Quantization (AQ) approach for information retrieval.
We provide fast GPU and CPU implementations of AQLM for token generation, which enable us to match or outperform optimized FP16 implementations for speed.
arXiv Detail & Related papers (2024-01-11T18:54:44Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Tuning Particle Accelerators with Safety Constraints using Bayesian
Optimization [73.94660141019764]
tuning machine parameters of particle accelerators is a repetitive and time-consuming task.
We propose and evaluate a step size-limited variant of safe Bayesian optimization.
arXiv Detail & Related papers (2022-03-26T02:21:03Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
We propose a strategy to give high approximation ratio on average, even at large circuit depths, by initializing QAOA with the optimal parameters obtained from the previous depths.
We test our strategy on the Max-cut problem of certain classes of graphs such as the 3-regular graphs and the Erd"os-R'enyi graphs.
arXiv Detail & Related papers (2021-08-11T15:44:16Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.