Parameter Setting Heuristics Make the Quantum Approximate Optimization Algorithm Suitable for the Early Fault-Tolerant Era
- URL: http://arxiv.org/abs/2408.09538v1
- Date: Sun, 18 Aug 2024 16:48:14 GMT
- Title: Parameter Setting Heuristics Make the Quantum Approximate Optimization Algorithm Suitable for the Early Fault-Tolerant Era
- Authors: Zichang He, Ruslan Shaydulin, Dylan Herman, Changhao Li, Rudy Raymond, Shree Hari Sureshbabu, Marco Pistoia,
- Abstract summary: Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising quantum optimizations.
Recent advances in parameter setting in QAOA make EFTQC experiments with QAOA practically viable.
- Score: 3.734751161717204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Approximate Optimization Algorithm (QAOA) is one of the most promising quantum heuristics for combinatorial optimization. While QAOA has been shown to perform well on small-scale instances and to provide an asymptotic speedup over state-of-the-art classical algorithms for some problems, fault-tolerance is understood to be required to realize this speedup in practice. The low resource requirements of QAOA make it particularly suitable to benchmark on early fault-tolerant quantum computing (EFTQC) hardware. However, the performance of QAOA depends crucially on the choice of the free parameters in the circuit. The task of setting these parameters is complicated in the EFTQC era by the large overheads, which preclude extensive classical optimization. In this paper, we summarize recent advances in parameter setting in QAOA and show that these advancements make EFTQC experiments with QAOA practically viable.
Related papers
- Benchmarking Metaheuristic-Integrated QAOA against Quantum Annealing [0.0]
The study provides insights into the strengths and limitations of both Quantum Annealing and metaheuristic-integrated QAOA across different problem domains.
The findings suggest that the hybrid approach can leverage classical optimization strategies to enhance the solution quality and convergence speed of QAOA.
arXiv Detail & Related papers (2023-09-28T18:55:22Z) - The QAOA with Few Measurements [4.713817702376467]
The Approximate Quantum Optimization Algorithm (QAOA) was originally developed to solve optimization problems.
Fully descriptive benchmarking techniques are often expensive for large numbers of qubits.
Some experimental quantum computing platforms such as neutral atom quantum computers have slow repetition rates.
arXiv Detail & Related papers (2022-05-13T18:42:20Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
We propose a strategy to give high approximation ratio on average, even at large circuit depths, by initializing QAOA with the optimal parameters obtained from the previous depths.
We test our strategy on the Max-cut problem of certain classes of graphs such as the 3-regular graphs and the Erd"os-R'enyi graphs.
arXiv Detail & Related papers (2021-08-11T15:44:16Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Quantum annealing initialization of the quantum approximate optimization
algorithm [0.0]
Quantum approximate optimization algorithm (QAOA) is a prospective near-term quantum algorithm.
external parameter optimization required in QAOA could become a performance bottleneck.
In this work we visualize the optimization landscape of the QAOA applied to the MaxCut problem on random graphs.
arXiv Detail & Related papers (2021-01-14T17:45:13Z) - Bridging Classical and Quantum with SDP initialized warm-starts for QAOA [4.76507354067301]
We introduce a classical pre-processing step that initializes QAOA with a biased superposition of all possible cuts in the graph.
We show that this variant of QAOA, called QAOA-Warm, is able to outperform standard QAOA on lower circuit depths with less training time.
arXiv Detail & Related papers (2020-10-27T02:57:22Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.