MUFASA: Multi-View Fusion and Adaptation Network with Spatial Awareness for Radar Object Detection
- URL: http://arxiv.org/abs/2408.00565v1
- Date: Thu, 1 Aug 2024 13:52:18 GMT
- Title: MUFASA: Multi-View Fusion and Adaptation Network with Spatial Awareness for Radar Object Detection
- Authors: Xiangyuan Peng, Miao Tang, Huawei Sun, Kay Bierzynski, Lorenzo Servadei, Robert Wille,
- Abstract summary: sparsity of radar point clouds poses challenges in achieving precise object detection.
This paper introduces a comprehensive feature extraction method for radar point clouds.
We achieve state-of-the-art results among radar-based methods on the VoD dataset with the mAP of 50.24%.
- Score: 3.1212590312985986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, approaches based on radar object detection have made significant progress in autonomous driving systems due to their robustness under adverse weather compared to LiDAR. However, the sparsity of radar point clouds poses challenges in achieving precise object detection, highlighting the importance of effective and comprehensive feature extraction technologies. To address this challenge, this paper introduces a comprehensive feature extraction method for radar point clouds. This study first enhances the capability of detection networks by using a plug-and-play module, GeoSPA. It leverages the Lalonde features to explore local geometric patterns. Additionally, a distributed multi-view attention mechanism, DEMVA, is designed to integrate the shared information across the entire dataset with the global information of each individual frame. By employing the two modules, we present our method, MUFASA, which enhances object detection performance through improved feature extraction. The approach is evaluated on the VoD and TJ4DRaDSet datasets to demonstrate its effectiveness. In particular, we achieve state-of-the-art results among radar-based methods on the VoD dataset with the mAP of 50.24%.
Related papers
- PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Multi-scale direction-aware SAR object detection network via global information fusion [18.997878517911378]
This paper proposes SAR-Net, a novel framework specifically designed for global fusion of direction-aware information in SAR object detection.
UCM and DAM enable efficient global information fusion and transmission.
Experiments demonstrate the effectiveness of SAR-Net, achieving state-of-the-art results on aircraft and ship datasets.
arXiv Detail & Related papers (2023-12-28T10:40:11Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Radar-Lidar Fusion for Object Detection by Designing Effective
Convolution Networks [18.17057711053028]
We propose a dual-branch framework to integrate radar and Lidar data for enhanced object detection.
The results show that it surpasses state-of-the-art methods by $1.89%$ and $2.61%$ in favorable and adverse weather conditions.
arXiv Detail & Related papers (2023-10-30T10:18:40Z) - ClusterFusion: Leveraging Radar Spatial Features for Radar-Camera 3D
Object Detection in Autonomous Vehicles [0.0]
Deep learning radar-camera 3D object detection methods may reliably produce accurate detections even in low-visibility conditions.
Recent radar-camera methods commonly perform feature-level fusion which often involves projecting the radar points onto the same plane as the image features and fusing the extracted features from both modalities.
We proposed ClusterFusion, an architecture that leverages the local spatial features of the radar point cloud by clustering the point cloud and performing feature extraction directly on the point cloud clusters.
arXiv Detail & Related papers (2023-09-07T14:23:47Z) - Multi-Task Cross-Modality Attention-Fusion for 2D Object Detection [6.388430091498446]
We propose two new radar preprocessing techniques to better align radar and camera data.
We also introduce a Multi-Task Cross-Modality Attention-Fusion Network (MCAF-Net) for object detection.
Our approach outperforms current state-of-the-art radar-camera fusion-based object detectors in the nuScenes dataset.
arXiv Detail & Related papers (2023-07-17T09:26:13Z) - RaLiBEV: Radar and LiDAR BEV Fusion Learning for Anchor Box Free Object
Detection Systems [13.046347364043594]
In autonomous driving, LiDAR and radar are crucial for environmental perception.
Recent state-of-the-art works reveal that the fusion of radar and LiDAR can lead to robust detection in adverse weather.
We propose a bird's-eye view fusion learning-based anchor box-free object detection system.
arXiv Detail & Related papers (2022-11-11T10:24:42Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
In this paper, we explore the possibility of achieving a more accurate depth estimation by fusing monocular images and Radar points using a deep neural network.
We find that the noise existing in Radar measurements is one of the main key reasons that prevents one from applying the existing fusion methods.
The experiments are conducted on the nuScenes dataset, which is one of the first datasets which features Camera, Radar, and LiDAR recordings in diverse scenes and weather conditions.
arXiv Detail & Related papers (2020-09-30T19:01:33Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
We propose a novel Cross-layer Feature Pyramid Network to improve the progressive fusion in salient object detection.
The distributed features per layer own both semantics and salient details from all other layers simultaneously, and suffer reduced loss of important information.
arXiv Detail & Related papers (2020-02-25T14:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.