論文の概要: Improving Text Embeddings for Smaller Language Models Using Contrastive Fine-tuning
- arxiv url: http://arxiv.org/abs/2408.00690v2
- Date: Fri, 2 Aug 2024 14:36:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 12:28:46.192205
- Title: Improving Text Embeddings for Smaller Language Models Using Contrastive Fine-tuning
- Title(参考訳): コントラスト微調整による小言語モデルのテキスト埋め込みの改善
- Authors: Trapoom Ukarapol, Zhicheng Lee, Amy Xin,
- Abstract要約: 我々はNLIデータセットに対して対照的な微調整を行う。
MiniCPMは、平均56.33%のパフォーマンス向上の最も重要な改善を示している。
- 参考スコア(独自算出の注目度): 0.9561495813823734
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Large Language Models show remarkable performance in natural language understanding, their resource-intensive nature makes them less accessible. In contrast, smaller language models such as MiniCPM offer more sustainable scalability, but often underperform without specialized optimization. In this paper, we explore the enhancement of smaller language models through the improvement of their text embeddings. We select three language models, MiniCPM, Phi-2, and Gemma, to conduct contrastive fine-tuning on the NLI dataset. Our results demonstrate that this fine-tuning method enhances the quality of text embeddings for all three models across various benchmarks, with MiniCPM showing the most significant improvements of an average 56.33% performance gain. The contrastive fine-tuning code is publicly available at https://github.com/trapoom555/Language-Model-STS-CFT.
- Abstract(参考訳): 大規模言語モデルは、自然言語理解において顕著な性能を示すが、そのリソース集約性は、言語をアクセスしにくくする。
対照的に、MiniCPMのような小さな言語モデルは、より持続的なスケーラビリティを提供するが、特殊最適化なしでは性能が劣ることが多い。
本稿では,テキスト埋め込みの改良を通じて,より小さな言語モデルの強化について検討する。
NLIデータセット上で対照的な微調整を行うために,MiniCPM,Phi-2,Gemmaの3つの言語モデルを選択する。
以上の結果から, この微調整手法により, 各種ベンチマークにおける3つのモデルすべてに対するテキスト埋め込みの質が向上し, 平均56.33%の性能向上率が最も顕著であることがわかった。
対照的な微調整コードはhttps://github.com/trapoom555/Language-Model-STS-CFTで公開されている。
関連論文リスト
- EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMAは、視覚的およびテキスト的エンコーディングを効率的に融合するために設計された軽量なクロスプラットフォームモジュールである。
EMMAは複数のタスクのパフォーマンスを最大9.3%向上させ、幻覚に対する堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T23:00:31Z) - Enhancing SLM via ChatGPT and Dataset Augmentation [0.3844771221441211]
我々は,大言語モデル (LLMs) と小言語モデル (SLMs) のパフォーマンスギャップを埋めるために,知識蒸留技術と合成データセット拡張を用いている。
提案手法は,情報抽出と情報推論という2種類の理性生成を伴い,ANLIデータセットを充実させる。
その結果, 合成合理化によって自然言語の理解能力が向上し, ANLIデータセット上での分類精度が1.3%, 2.3%向上することが判明した。
論文 参考訳(メタデータ) (2024-09-19T09:24:36Z) - ML-SUPERB 2.0: Benchmarking Multilingual Speech Models Across Modeling Constraints, Languages, and Datasets [106.7760874400261]
本稿では、事前訓練されたSSLと教師付き音声モデルを評価するための新しいベンチマークであるML-SUPERB2.0を提案する。
ML-SUPERBのセットアップよりも性能が向上するが、性能は下流モデル設計に依存している。
また、言語とデータセットのパフォーマンスに大きな違いがあることから、よりターゲットを絞ったアプローチの必要性も示唆されている。
論文 参考訳(メタデータ) (2024-06-12T21:01:26Z) - Enhancing Embedding Performance through Large Language Model-based Text Enrichment and Rewriting [0.0]
本稿では,大規模な言語モデル(LLM)を活用して埋め込み処理前に入力テキストを豊かに書き直しすることで,埋め込み性能を向上させる新しい手法を提案する。
このアプローチの有効性は、Banking77 Classification、TwitterSemEval 2015、Amazon Counter-factual Classificationの3つのデータセットで評価されている。
論文 参考訳(メタデータ) (2024-04-18T15:58:56Z) - MAPLE: Multilingual Evaluation of Parameter Efficient Finetuning of Large Language Models [7.321459642283822]
ファインチューニングは、膨大なリソースと計算を必要とせずに、言語モデルの性能を向上させることができる。
LLama-2-7B モデルと Mistral-7B モデルを2つの合成多言語命令チューニングデータセット上で微調整し、モデル性能に与える影響を判定する。
小型のオープンソースモデルのPEFTは、これらのモデルとより大きなモデルの間のギャップを埋めることがあるが、英語のパフォーマンスは打撃を受ける可能性がある。
論文 参考訳(メタデータ) (2024-01-15T11:06:43Z) - On the Analysis of Cross-Lingual Prompt Tuning for Decoder-based
Multilingual Model [49.81429697921861]
多言語自己回帰モデルにおけるパラメータ効率細調整(PEFT)と言語間タスクの相互作用について検討する。
高速チューニングは、微調整よりも低リソース言語の性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-14T00:43:33Z) - Joint Adaptive Representations for Image-Language Learning [59.40890927221377]
画像言語学習のためのレシピを提案し、より大きくて高価なものよりも優れたモデルを作成し、しばしば桁違いに大きなデータセットで訓練する。
我々の重要な発見は、適応的かつ反復的にマルチモーダルな特徴を融合させる、コンパクトな視覚と言語表現の連成学習である。
たった4000万のトレーニング例と39のGFLOPで、私たちの軽量モデルは、2~20倍以上のFLOPの最先端モデルで、さらに大きなデータセットを使用して、1B近くのトレーニング例で何倍もパフォーマンスを上げています。
論文 参考訳(メタデータ) (2023-05-31T15:02:02Z) - PaLM: Scaling Language Modeling with Pathways [180.69584031908113]
我々は,パスウェイズ言語モデル PaLM と呼ばれるトランスフォーマー言語モデルを用いて,540ビリオンのパラメータを訓練した。
我々はPathwaysという新しいMLシステムを用いて,6144 TPU v4チップ上でPaLMをトレーニングした。
数百の言語理解および生成ベンチマーク上で、最先端の数発の学習結果を達成し、スケーリングの継続的なメリットを実証する。
論文 参考訳(メタデータ) (2022-04-05T16:11:45Z) - Distributionally Robust Multilingual Machine Translation [94.51866646879337]
本稿では,分散的ロバストな最適化に基づくMNMT(Multilingual Neural Machine Translation)の新しい学習目標を提案する。
この目的を,反復的最適応答方式を用いて,大規模翻訳コーパスに対して実用的に最適化する方法を示す。
本手法は,多対一の翻訳設定と多対多の翻訳設定の両方において,平均と言語毎のパフォーマンスにおいて,強いベースライン法より一貫して優れる。
論文 参考訳(メタデータ) (2021-09-09T03:48:35Z) - GPT3Mix: Leveraging Large-scale Language Models for Text Augmentation [9.501648136713694]
GPT-3のような大規模言語モデルは優れた数ショット学習者であり、自然なテキストプロンプトで制御できる。
本稿では,大規模言語モデルを用いて現実的なテキストサンプルを生成する新しいデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2021-04-18T11:39:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。