論文の概要: Joint Neural Networks for One-shot Object Recognition and Detection
- arxiv url: http://arxiv.org/abs/2408.00701v1
- Date: Thu, 1 Aug 2024 16:48:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 19:57:15.742444
- Title: Joint Neural Networks for One-shot Object Recognition and Detection
- Title(参考訳): ワンショット物体認識・検出のためのジョイントニューラルネットワーク
- Authors: Camilo J. Vargas, Qianni Zhang, Ebroul Izquierdo,
- Abstract要約: 本稿では,一発物体の認識と検出に難渋する課題に対処する,新しい結合ニューラルネットワーク手法を提案する。
Siameseのニューラルネットワークと最先端のマルチボックス検出アプローチにインスパイアされたジョイントニューラルネットワークは、トレーニングプロセス中に見つからないカテゴリのオブジェクト認識と検出を行うことができる。
提案手法は,MiniImageNetデータセット上での1ショットオブジェクト認識における61.41%の精度と,データセット上でトレーニングしてテストした場合の1ショットオブジェクト検出における47.1%のmAPを実現する。
- 参考スコア(独自算出の注目度): 5.389851588398047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel joint neural networks approach to address the challenging one-shot object recognition and detection tasks. Inspired by Siamese neural networks and state-of-art multi-box detection approaches, the joint neural networks are able to perform object recognition and detection for categories that remain unseen during the training process. Following the one-shot object recognition/detection constraints, the training and testing datasets do not contain overlapped classes, in other words, all the test classes remain unseen during training. The joint networks architecture is able to effectively compare pairs of images via stacked convolutional layers of the query and target inputs, recognising patterns of the same input query category without relying on previous training around this category. The proposed approach achieves 61.41% accuracy for one-shot object recognition on the MiniImageNet dataset and 47.1% mAP for one-shot object detection when trained on the COCO dataset and tested using the Pascal VOC dataset. Code available at https://github.com/cjvargasc/JNN recog and https://github.com/cjvargasc/JNN detection/
- Abstract(参考訳): 本稿では,一発物体の認識と検出に難渋する課題に対処する,新しい結合ニューラルネットワーク手法を提案する。
Siameseのニューラルネットワークと最先端のマルチボックス検出アプローチにインスパイアされたジョイントニューラルネットワークは、トレーニングプロセス中に見つからないカテゴリのオブジェクト認識と検出を行うことができる。
ワンショットのオブジェクト認識/検出の制約に従って、トレーニングとテストのデータセットには重複したクラスが含まれていない。
結合ネットワークアーキテクチャは、クエリとターゲット入力の積み重ねた畳み込み層を介して画像のペアを効果的に比較することができ、このカテゴリに関する以前のトレーニングに頼ることなく、同じ入力クエリカテゴリのパターンを認識することができる。
提案手法は,COCOデータセットでトレーニングし,Pascal VOCデータセットを用いてテストした場合に,MiniImageNetデータセット上での1ショットオブジェクト認識の61.41%精度と1ショットオブジェクト検出の47.1%mAPを実現する。
https://github.com/cjvargasc/JNN recog and https://github.com/cjvargasc/JNN detection/
関連論文リスト
- Disentangled Pre-training for Human-Object Interaction Detection [22.653500926559833]
本稿では,DP-HOI検出のための非交互事前学習法を提案する。
DP-HOIは、オブジェクト検出とアクション認識データセットを使用して、検出およびインタラクションデコーダ層を事前トレーニングする。
これは、様々な稀なカテゴリにおける既存のHOI検出モデルの性能を大幅に向上させる。
論文 参考訳(メタデータ) (2024-04-02T08:21:16Z) - Few-Shot Object Detection with Sparse Context Transformers [37.106378859592965]
少ないショット検出は、少ないラベル付きデータでトレーニングされたモデルを使用してオブジェクトをローカライズするパターン認識における主要なタスクである。
本稿では,ソース領域におけるオブジェクトの知識を効果的に活用し,対象領域内の少数のトレーニング画像からスパースコンテキストを自動的に学習する新しいスパースコンテキスト変換器を提案する。
提案手法を2つの難易度オブジェクト検出ベンチマークで評価し,提案手法が関連する最先端技術と比較して競合性能を得ることを示す実験結果を得た。
論文 参考訳(メタデータ) (2024-02-14T17:10:01Z) - Neural Maximum A Posteriori Estimation on Unpaired Data for Motion
Deblurring [87.97330195531029]
本稿では、ニューラルネットワークをトレーニングし、失明したデータから視覚情報や鋭いコンテンツを復元するためのニューラルネットワークの最大Aポストエリオリ(NeurMAP)推定フレームワークを提案する。
提案されたNeurMAPは、既存のデブロアリングニューラルネットワークに対するアプローチであり、未使用データセット上のイメージデブロアリングネットワークのトレーニングを可能にする最初のフレームワークである。
論文 参考訳(メタデータ) (2022-04-26T08:09:47Z) - Experience feedback using Representation Learning for Few-Shot Object
Detection on Aerial Images [2.8560476609689185]
大規模なリモートセンシング画像データセットであるDOTAを用いて,本手法の性能評価を行った。
特に、数発のオブジェクト検出タスクの固有の弱点を強調します。
論文 参考訳(メタデータ) (2021-09-27T13:04:53Z) - Dynamic Relevance Learning for Few-Shot Object Detection [6.550840743803705]
動的グラフ畳み込みネットワーク(GCN)を構築するために,すべてのサポート画像とクエリ画像上の関心領域(RoI)の関係を利用した動的関連学習モデルを提案する。
提案モデルでは,より一般化された特徴の学習の有効性を示す総合的な性能が得られた。
論文 参考訳(メタデータ) (2021-08-04T18:29:42Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot画像分類は、大規模なデータセットから学んだ事前学習された知識を利用して、一連の下流分類タスクに取り組むことを目的としている。
本研究では,Few-Shot LearningフレームワークであるCOSOCを提案する。
論文 参考訳(メタデータ) (2021-07-16T07:46:41Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
現在の最先端の視覚認識システムは、大規模データセット上でニューラルネットワークを事前トレーニングし、より小さなデータセットでネットワーク重みを微調整することに依存している。
本稿では,各ドメインタスクに適応したネットワークアーキテクチャの動的適応と,効率と効率の両面で重みの微調整の利点を実証する。
本手法は,ソースドメインタスクでスーパーネットトレーニングを自己教師付き学習に置き換え,下流タスクで線形評価を行うことにより,教師なしパラダイムに容易に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T08:15:17Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
我々はVDNet(Ventral-Dorsal Networks)と呼ばれる新しいフレームワークを提案する。
人間の視覚システムの構造にインスパイアされた我々は「Ventral Network」と「Dorsal Network」の統合を提案する。
実験の結果,提案手法は最先端の物体検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-15T23:57:36Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
本稿では,高速な物体検出のための新しいディープラーニングアルゴリズムを提案する。
提案アルゴリズムは,1つのCPUスレッドと同時に,競合精度と高い推論効率を実現する。
論文 参考訳(メタデータ) (2020-01-22T15:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。