A deep learning-enabled smart garment for accurate and versatile sleep conditions monitoring in daily life
- URL: http://arxiv.org/abs/2408.00753v2
- Date: Thu, 3 Oct 2024 16:13:26 GMT
- Title: A deep learning-enabled smart garment for accurate and versatile sleep conditions monitoring in daily life
- Authors: Chenyu Tang, Wentian Yi, Muzi Xu, Yuxuan Jin, Zibo Zhang, Xuhang Chen, Caizhi Liao, Peter Smielewski, Luigi G. Occhipinti,
- Abstract summary: We report a washable, skin-compatible smart garment sleep monitoring system that captures local skin strain signals without positioning or skin preparation requirements.
A printed textile-based strain sensor array responds to strain from 0.1% to 10% with a gauge factor as high as 100.
The smart garment is capable of classifying six sleep states with an accuracy of 98.6%, maintaining excellent explainability (classification with low bias) and generalization accuracy on new users with few-shot learning less than 15 samples per class.
- Score: 2.8587098692786905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In wearable smart systems, continuous monitoring and accurate classification of different sleep-related conditions are critical for enhancing sleep quality and preventing sleep-related chronic conditions. However, the requirements for device-skin coupling quality in electrophysiological sleep monitoring systems hinder the comfort and reliability of night wearing. Here, we report a washable, skin-compatible smart garment sleep monitoring system that captures local skin strain signals under weak device-skin coupling conditions without positioning or skin preparation requirements. A printed textile-based strain sensor array responds to strain from 0.1% to 10% with a gauge factor as high as 100 and shows independence to extrinsic motion artefacts via strain-isolating printed pattern design. Through reversible starching treatment, ink penetration depth during direct printing on garments is controlled to achieve batch-to-batch performance variation < 10%. Coupled with deep learning, explainable artificial intelligence (XAI), and transfer learning data processing, the smart garment is capable of classifying six sleep states with an accuracy of 98.6%, maintaining excellent explainability (classification with low bias) and generalization (95% accuracy on new users with few-shot learning less than 15 samples per class) in practical applications, paving the way for next-generation daily sleep healthcare management.
Related papers
- Clustering and Data Augmentation to Improve Accuracy of Sleep Assessment and Sleep Individuality Analysis [1.9662978733004597]
This study aims to construct a machine learning-based sleep assessment model providing evidence-based assessments, such as poor sleep due to frequent movement during sleep onset.
Extracting sleep sound events, deriving latent representations using VAE, clustering with GMM, and training LSTM for subjective sleep assessment achieved a high accuracy of 94.8% in distinguishing sleep satisfaction.
arXiv Detail & Related papers (2024-04-16T05:56:41Z) - A machine-learning sleep-wake classification model using a reduced
number of features derived from photoplethysmography and activity signals [0.0]
Photoplethys (mography) has been demonstrated to be an effective signal for sleep stage inference.
In this work, we present a machine learning sleep-wake classification model based on the eXtreme Gradient Boosting algorithm.
The performance of our method was comparable to current state-of-the-art methods with a Sensitivity of 91.15 $pm$ 1.16%, Specificity of 53.66 $pm$ 1.12%, F1-score of 83.88 $pm$ 0.56%, and Kappa of 48.0 $pm$ 0.86%.
arXiv Detail & Related papers (2023-08-07T13:43:19Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
Sleep Activity Recognition methods can provide indicators to assess, monitor, and characterize subjects' sleep-wake cycles and detect behavioral changes.
We propose a general method that continuously operates on passively sensed data from smartphones to characterize sleep and identify significant sleep episodes.
Thanks to their ubiquity, these devices constitute an excellent alternative data source to profile subjects' biorhythms in a continuous, objective, and non-invasive manner.
arXiv Detail & Related papers (2023-01-17T15:18:45Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time.
Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles.
Mobile passively sensed data captured from smartphones constitute an excellent alternative to profile patients' biorhythm.
arXiv Detail & Related papers (2022-11-08T17:29:40Z) - Development of Sleep State Trend (SST), a bedside measure of neonatal
sleep state fluctuations based on single EEG channels [0.0]
We develop and validate an automated method for bedside monitoring of sleep state fluctuations in neonatal intensive care units.
A deep learning -based algorithm was designed and trained using 53 EEG recordings from a long-term (a)EEG monitoring in 30 near-term neonates.
The accuracy of quiet sleep detection in the training data was 90%, and the accuracy was comparable (85-86%) in all bipolar derivations available from the 4-electrode recordings.
arXiv Detail & Related papers (2022-08-25T08:36:44Z) - A high performance fingerprint liveness detection method based on
quality related features [66.41574316136379]
The system is tested on a highly challenging database comprising over 10,500 real and fake images.
The proposed solution proves to be robust to the multi-scenario dataset, and presents an overall rate of 90% correctly classified samples.
arXiv Detail & Related papers (2021-11-02T21:09:39Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - In-Bed Person Monitoring Using Thermal Infrared Sensors [53.561797148529664]
We use 'Griddy', a prototype with a Panasonic Grid-EYE, a low-resolution infrared thermopile array sensor, which offers more privacy.
For this purpose, two datasets were captured, one (480 images) under constant conditions, and a second one (200 images) under different variations.
We test three machine learning algorithms: Support Vector Machines (SVM), k-Nearest Neighbors (k-NN) and Neural Network (NN)
arXiv Detail & Related papers (2021-07-16T15:59:07Z) - Identity and Posture Recognition in Smart Beds with Deep Multitask
Learning [8.422257363944295]
We propose a robust deep learning model capable of accurately detecting subjects and their sleeping postures.
A combination of loss functions is used to discriminate subjects and their sleeping postures simultaneously.
The proposed algorithm can ultimately be used in clinical and smart home environments.
arXiv Detail & Related papers (2021-04-05T21:21:54Z) - Classification Of Sleep-Wake State In A Ballistocardiogram System Based
On Deep Learning [1.4680035572775534]
We propose a Multi-Head 1D-Convolution based Deep Neural Network to classify sleep-wake state and predict sleep-wake time accurately.
Our method achieves a sleep-wake classification score of 95.5%, which is on par with researches based on the PSG system.
arXiv Detail & Related papers (2020-11-11T03:38:33Z) - Neural Network Virtual Sensors for Fuel Injection Quantities with
Provable Performance Specifications [71.1911136637719]
We show how provable guarantees can be naturally applied to other real world settings.
We show how specific intervals of fuel injection quantities can be targeted to maximize robustness for certain ranges.
arXiv Detail & Related papers (2020-06-30T23:33:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.