Efficient Transfer Learning for Video-language Foundation Models
- URL: http://arxiv.org/abs/2411.11223v1
- Date: Mon, 18 Nov 2024 01:25:58 GMT
- Title: Efficient Transfer Learning for Video-language Foundation Models
- Authors: Haoxing Chen, Zizheng Huang, Yan Hong, Yanshuo Wang, Zhongcai Lyu, Zhuoer Xu, Jun Lan, Zhangxuan Gu,
- Abstract summary: We propose a simple yet effective Multi-modal Spatio-supervised (MSTA) to improve the alignment between representations in the text and vision branches.
We evaluate the effectiveness of our approach across four tasks: zero-shot transfer, few-shot learning, base-to-valiant, and fully-language learning.
- Score: 13.166348605993292
- License:
- Abstract: Pre-trained vision-language models provide a robust foundation for efficient transfer learning across various downstream tasks. In the field of video action recognition, mainstream approaches often introduce additional parameter modules to capture temporal information. While the increased model capacity brought by these additional parameters helps better fit the video-specific inductive biases, existing methods require learning a large number of parameters and are prone to catastrophic forgetting of the original generalizable knowledge. In this paper, we propose a simple yet effective Multi-modal Spatio-Temporal Adapter (MSTA) to improve the alignment between representations in the text and vision branches, achieving a balance between general knowledge and task-specific knowledge. Furthermore, to mitigate over-fitting and enhance generalizability, we introduce a spatio-temporal description-guided consistency constraint. This constraint involves feeding template inputs (i.e., ``a video of $\{\textbf{cls}\}$'') into the trainable language branch, while LLM-generated spatio-temporal descriptions are input into the pre-trained language branch, enforcing consistency between the outputs of the two branches. This mechanism prevents over-fitting to downstream tasks and improves the distinguishability of the trainable branch within the spatio-temporal semantic space. We evaluate the effectiveness of our approach across four tasks: zero-shot transfer, few-shot learning, base-to-novel generalization, and fully-supervised learning. Compared to many state-of-the-art methods, our MSTA achieves outstanding performance across all evaluations, while using only 2-7\% of the trainable parameters in the original model. Code will be avaliable at https://github.com/chenhaoxing/ETL4Video.
Related papers
- Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
We show how to adapt a pre-trained Vision Transformer to downstream recognition tasks with only a few learnable parameters.
We synthesize a task-specific query with a learnable and lightweight module, which is independent of the pre-trained model.
Our method achieves state-of-the-art performance under memory constraints, showcasing its applicability in real-world situations.
arXiv Detail & Related papers (2024-07-09T15:45:04Z) - Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model [27.56988000960972]
We introduce a new framework based on a dual context of both domain-shared and class-specific contexts.
Such dual prompt methods enhance the model's feature representation by joining implicit and explicit factors encoded in Large Language Models.
We also formulate the Unbalanced Optimal Transport (UOT) theory to quantify the relationships between constructed prompts and visual tokens.
arXiv Detail & Related papers (2024-07-05T13:15:29Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) is a simple and effective approach to generate visual prompts that can transfer to different models and improve their performance on downstream tasks after trained on only one model.
We introduce two strategies to address the issue of cross-model feature corruption of existing visual prompting methods and enhance the transferability of the learned prompts.
arXiv Detail & Related papers (2024-04-17T09:39:07Z) - Conditional Prototype Rectification Prompt Learning [32.533844163120875]
We propose a Prototype Rectification Prompt Learning (CPR) method to correct the bias of base examples and augment limited data in an effective way.
CPR achieves state-of-the-art performance on both few-shot classification and base-to-new generalization tasks.
arXiv Detail & Related papers (2024-04-15T15:43:52Z) - Distribution-Aware Prompt Tuning for Vision-Language Models [20.02599087680773]
A key to prompt tuning is the feature space alignment between two modalities via learnable vectors with model parameters fixed.
Inspired by this observation, we proposed distribution-aware prompt tuning (DAPT) for vision-language models.
Our experiments on 11 benchmark datasets demonstrate that our method significantly improves generalizability.
arXiv Detail & Related papers (2023-09-06T23:49:11Z) - DPL: Decoupled Prompt Learning for Vision-Language Models [41.90997623029582]
We propose a new method, Decoupled Prompt Learning, which reformulates the attention in prompt learning to alleviate this problem.
Our approach is flexible for both visual and textual modalities, making it easily extendable to multi-modal prompt learning.
arXiv Detail & Related papers (2023-08-19T15:48:38Z) - Multi-Modal Few-Shot Temporal Action Detection [157.96194484236483]
Few-shot (FS) and zero-shot (ZS) learning are two different approaches for scaling temporal action detection to new classes.
We introduce a new multi-modality few-shot (MMFS) TAD problem, which can be considered as a marriage of FS-TAD and ZS-TAD.
arXiv Detail & Related papers (2022-11-27T18:13:05Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUG is a new vision-language foundation model for both cross-modal understanding and generation.
It achieves state-of-the-art results on a wide range of vision-language downstream tasks, such as image captioning, image-text retrieval, visual grounding and visual question answering.
arXiv Detail & Related papers (2022-05-24T11:52:06Z) - Omni-Training for Data-Efficient Deep Learning [80.28715182095975]
Recent advances reveal that a properly pre-trained model endows an important property: transferability.
A tight combination of pre-training and meta-training cannot achieve both kinds of transferability.
This motivates the proposed Omni-Training framework towards data-efficient deep learning.
arXiv Detail & Related papers (2021-10-14T16:30:36Z) - Pre-training Text Representations as Meta Learning [113.3361289756749]
We introduce a learning algorithm which directly optimize model's ability to learn text representations for effective learning of downstream tasks.
We show that there is an intrinsic connection between multi-task pre-training and model-agnostic meta-learning with a sequence of meta-train steps.
arXiv Detail & Related papers (2020-04-12T09:05:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.