To reset, or not to reset -- that is the question
- URL: http://arxiv.org/abs/2408.00758v1
- Date: Thu, 1 Aug 2024 17:57:56 GMT
- Title: To reset, or not to reset -- that is the question
- Authors: György P. Gehér, Marcin Jastrzebski, Earl T. Campbell, Ophelia Crawford,
- Abstract summary: Text-book quantum error correction demands that qubits are reset after measurement.
Many cutting-edge quantum error correction experiments are opting for the no-reset approach.
We find that unconditionally resetting qubits can reduce the duration of fault-tolerant logical operation by up to a factor of two.
- Score: 2.749898166276854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Whether to reset qubits, or not, during quantum error correction experiments is a question of both foundational and practical importance for quantum computing. Text-book quantum error correction demands that qubits are reset after measurement. However, fast qubit reset has proven challenging to execute at high fidelity. Consequently, many cutting-edge quantum error correction experiments are opting for the no-reset approach, where physical reset is not performed. It has recently been postulated that no-reset is functionally equivalent to reset procedures, as well as being faster and easier. For memory experiments, we confirm numerically that resetting provides no benefit. On the other hand, we identify a remarkable difference during logical operations. We find that unconditionally resetting qubits can reduce the duration of fault-tolerant logical operation by up to a factor of two as the number of measurement errors that can be tolerated is doubled. We support this with numerical simulations. However, our simulations also reveal that the no-reset performance is superior if the reset duration or infidelity exceeds a given threshold. Lastly, we introduce two novel syndrome extraction circuits that can reduce the time overhead of no-reset approaches. Our findings provide guidance on how experimentalists should design future experiments.
Related papers
- Maximum Likelihood Quantum Error Mitigation for Algorithms with a Single
Correct Output [5.601537787608725]
Quantum error mitigation is an important technique to reduce the impact of noise in quantum computers.
We propose a simple and effective mitigation scheme, qubit-wise majority vote, for quantum algorithms with a single correct output.
arXiv Detail & Related papers (2024-02-19T04:44:33Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Optimal Qubit Reuse for Near-Term Quantum Computers [0.18188255328029254]
Increasing support for mid-circuit measurements and qubit reset in near-term quantum computers enables qubit reuse.
We introduce a formal model for qubit reuse optimization that delivers provably optimal solutions.
We show improvements in the number of qubits and swap gate insertions, estimated success probability, and Hellinger fidelity of the investigated quantum circuits.
arXiv Detail & Related papers (2023-07-31T23:15:45Z) - Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons [59.63080344946083]
We show that a "dual-rail qubit" consisting of a pair of resonantly coupled transmons can form a highly coherent erasure qubit.
We demonstrate mid-circuit detection of erasure errors while introducing $ 0.1%$ dephasing error per check.
This work establishes transmon-based dual-rail qubits as an attractive building block for hardware-efficient quantum error correction.
arXiv Detail & Related papers (2023-07-17T18:00:01Z) - Quantum state preparation via engineered ancilla resetting [0.0]
We study a protocol that incorporates periodic quantum resetting to prepare ground states of frustration-free parent Hamiltonians.
This protocol uses a steering Hamiltonian that enables local coupling between the system and ancillary degrees of freedom.
Our numerical results show that ancilla system entanglement is essential for faster convergence.
arXiv Detail & Related papers (2023-05-15T13:34:07Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - High-speed calibration and characterization of superconducting quantum
processors without qubit reset [0.0]
Active qubit reset increases the speed at which data can be gathered but requires additional hardware and/or calibration.
In this case, the outcome of a first measurement serves as the initial state for the next experiment.
We show how to efficiently analyze restless measurements and correct distortions to achieve an identical outcome and accuracy as compared to measurements in which the superconducting qubits are reset.
arXiv Detail & Related papers (2020-10-13T17:50:09Z) - Discrimination of Ohmic thermal baths by quantum dephasing probes [68.8204255655161]
We evaluate the minimum error probability achievable by three different kinds of quantum probes, namely a qubit, a qutrit and a quantum register made of two qubits.
A qutrit probe outperforms a qubit one in the discrimination task, whereas a register made of two qubits does not offer any advantage.
arXiv Detail & Related papers (2020-08-06T08:51:51Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.