Leveraging LLM Reasoning Enhances Personalized Recommender Systems
- URL: http://arxiv.org/abs/2408.00802v1
- Date: Mon, 22 Jul 2024 20:18:50 GMT
- Title: Leveraging LLM Reasoning Enhances Personalized Recommender Systems
- Authors: Alicia Y. Tsai, Adam Kraft, Long Jin, Chenwei Cai, Anahita Hosseini, Taibai Xu, Zemin Zhang, Lichan Hong, Ed H. Chi, Xinyang Yi,
- Abstract summary: We show that the application of Large Language Models (LLMs) reasoning in recommendation systems (RecSys) presents a distinct challenge.
Our study explores several aspects to better understand reasoning for RecSys and demonstrate how task quality improves.
- Score: 25.765908301183188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements have showcased the potential of Large Language Models (LLMs) in executing reasoning tasks, particularly facilitated by Chain-of-Thought (CoT) prompting. While tasks like arithmetic reasoning involve clear, definitive answers and logical chains of thought, the application of LLM reasoning in recommendation systems (RecSys) presents a distinct challenge. RecSys tasks revolve around subjectivity and personalized preferences, an under-explored domain in utilizing LLMs' reasoning capabilities. Our study explores several aspects to better understand reasoning for RecSys and demonstrate how task quality improves by utilizing LLM reasoning in both zero-shot and finetuning settings. Additionally, we propose RecSAVER (Recommender Systems Automatic Verification and Evaluation of Reasoning) to automatically assess the quality of LLM reasoning responses without the requirement of curated gold references or human raters. We show that our framework aligns with real human judgment on the coherence and faithfulness of reasoning responses. Overall, our work shows that incorporating reasoning into RecSys can improve personalized tasks, paving the way for further advancements in recommender system methodologies.
Related papers
- Investigating the Shortcomings of LLMs in Step-by-Step Legal Reasoning [34.427730009102966]
We develop an automated evaluation framework to identify reasoning errors and evaluate the performance of LLMs.
Our work will also serve as an evaluation framework that can be used in detailed error analysis of reasoning chains for logic-intensive complex tasks.
arXiv Detail & Related papers (2025-02-08T19:49:32Z) - Reason4Rec: Large Language Models for Recommendation with Deliberative User Preference Alignment [69.11529841118671]
We propose a new Deliberative Recommendation task, which incorporates explicit reasoning about user preferences as an additional alignment goal.
We then introduce the Reasoning-powered Recommender framework for deliberative user preference alignment.
arXiv Detail & Related papers (2025-02-04T07:17:54Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.
We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.
Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
arXiv Detail & Related papers (2024-12-17T13:05:36Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
We introduce a novel structure-oriented analysis method to help Large Language Models (LLMs) better understand a question.
To further improve the reliability in complex question-answering tasks, we propose a multi-agent reasoning system, Structure-oriented Autonomous Reasoning Agents (SARA)
Extensive experiments verify the effectiveness of the proposed reasoning system. Surprisingly, in some cases, the system even surpasses few-shot methods.
arXiv Detail & Related papers (2024-10-18T05:30:33Z) - RLRF4Rec: Reinforcement Learning from Recsys Feedback for Enhanced Recommendation Reranking [33.54698201942643]
Large Language Models (LLMs) have demonstrated remarkable performance across diverse domains.
This paper introduces RLRF4Rec, a novel framework integrating Reinforcement Learning from Recsys Feedback for Enhanced Recommendation Reranking.
arXiv Detail & Related papers (2024-10-08T11:42:37Z) - Large Language Models as Evaluators for Recommendation Explanations [23.938202791437337]
We investigate whether LLMs can serve as evaluators of recommendation explanations.
We design and apply a 3-level meta evaluation strategy to measure the correlation between evaluator labels and the ground truth provided by users.
Our study verifies that utilizing LLMs as evaluators can be an accurate, reproducible and cost-effective solution for evaluating recommendation explanation texts.
arXiv Detail & Related papers (2024-06-05T13:23:23Z) - Tapping the Potential of Large Language Models as Recommender Systems: A Comprehensive Framework and Empirical Analysis [91.5632751731927]
Large Language Models such as ChatGPT have showcased remarkable abilities in solving general tasks.
We propose a general framework for utilizing LLMs in recommendation tasks, focusing on the capabilities of LLMs as recommenders.
We analyze the impact of public availability, tuning strategies, model architecture, parameter scale, and context length on recommendation results.
arXiv Detail & Related papers (2024-01-10T08:28:56Z) - Empowering Few-Shot Recommender Systems with Large Language Models --
Enhanced Representations [0.0]
Large language models (LLMs) offer novel insights into tackling the few-shot scenarios encountered by explicit feedback-based recommender systems.
Our study can inspire researchers to delve deeper into the multifaceted dimensions of LLMs's involvement in recommender systems.
arXiv Detail & Related papers (2023-12-21T03:50:09Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.