Medical SAM 2: Segment medical images as video via Segment Anything Model 2
- URL: http://arxiv.org/abs/2408.00874v1
- Date: Thu, 1 Aug 2024 18:49:45 GMT
- Title: Medical SAM 2: Segment medical images as video via Segment Anything Model 2
- Authors: Jiayuan Zhu, Yunli Qi, Junde Wu,
- Abstract summary: We introduce Medical SAM 2 (MedSAM-2), an advanced segmentation model that addresses both 2D and 3D medical image segmentation tasks.
By adopting the philosophy of taking medical images as videos, MedSAM-2 not only applies to 3D medical images but also unlocks new One-prompt capability.
Our findings show that MedSAM-2 not only surpasses existing models in performance but also exhibits superior generalization across a range of medical image segmentation tasks.
- Score: 4.911843298581903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce Medical SAM 2 (MedSAM-2), an advanced segmentation model that utilizes the SAM 2 framework to address both 2D and 3D medical image segmentation tasks. By adopting the philosophy of taking medical images as videos, MedSAM-2 not only applies to 3D medical images but also unlocks new One-prompt Segmentation capability. That allows users to provide a prompt for just one or a specific image targeting an object, after which the model can autonomously segment the same type of object in all subsequent images, regardless of temporal relationships between the images. We evaluated MedSAM-2 across a variety of medical imaging modalities, including abdominal organs, optic discs, brain tumors, thyroid nodules, and skin lesions, comparing it against state-of-the-art models in both traditional and interactive segmentation settings. Our findings show that MedSAM-2 not only surpasses existing models in performance but also exhibits superior generalization across a range of medical image segmentation tasks. Our code will be released at: https://github.com/MedicineToken/Medical-SAM2
Related papers
- DB-SAM: Delving into High Quality Universal Medical Image Segmentation [100.63434169944853]
We propose a dual-branch adapted SAM framework, named DB-SAM, to bridge the gap between natural and 2D/3D medical data.
Our proposed DB-SAM achieves an absolute gain of 8.8%, compared to a recent medical SAM adapter in the literature.
arXiv Detail & Related papers (2024-10-05T14:36:43Z) - SAM2-UNet: Segment Anything 2 Makes Strong Encoder for Natural and Medical Image Segmentation [51.90445260276897]
We prove that the Segment Anything Model 2 (SAM2) can be a strong encoder for U-shaped segmentation models.
We propose a simple but effective framework, termed SAM2-UNet, for versatile image segmentation.
arXiv Detail & Related papers (2024-08-16T17:55:38Z) - Segment Anything in Medical Images and Videos: Benchmark and Deployment [8.51742337818826]
We first present a comprehensive benchmarking of the Segment Anything Model 2 (SAM2) across 11 medical image modalities and videos.
Then, we develop a transfer learning pipeline and demonstrate SAM2 can be quickly adapted to medical domain by fine-tuning.
We implement SAM2 as a 3D slicer plugin and Gradio API for efficient 3D image and video segmentation.
arXiv Detail & Related papers (2024-08-06T17:58:18Z) - Biomedical SAM 2: Segment Anything in Biomedical Images and Videos [32.818587990862426]
BioSAM-2 is an enhanced foundation model optimized for biomedical data based on SAM-2.
Our experiments show that BioSAM-2 not only surpasses the performance of existing state-of-the-art foundation models but also matches or even exceeds specialist models.
arXiv Detail & Related papers (2024-08-06T16:34:04Z) - Interactive 3D Medical Image Segmentation with SAM 2 [17.523874868612577]
We explore the zero-shot capabilities of SAM 2, the next-generation Meta SAM model trained on videos, for 3D medical image segmentation.
By treating sequential 2D slices of 3D images as video frames, SAM 2 can fully automatically propagate annotations from a single frame to the entire 3D volume.
arXiv Detail & Related papers (2024-08-05T16:58:56Z) - Segment anything model 2: an application to 2D and 3D medical images [16.253160684182895]
Segment Anything Model (SAM) has gained significant attention because of its ability to segment various objects in images given a prompt.
Recently developed SAM 2 has extended this ability to video inputs.
This opens an opportunity to apply SAM to 3D images, one of the fundamental tasks in the medical imaging field.
arXiv Detail & Related papers (2024-08-01T17:57:25Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder [101.28268762305916]
In this work, we replace Segment Anything Model with an encoder that operates on the same input image.
We obtain state-of-the-art results on multiple medical images and video benchmarks.
For inspecting the knowledge within it, and providing a lightweight segmentation solution, we also learn to decode it into a mask by a shallow deconvolution network.
arXiv Detail & Related papers (2023-06-10T07:27:00Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation.
Recent studies and individual experiments have shown that SAM underperforms in medical image segmentation.
We propose the Medical SAM Adapter (Med-SA), which incorporates domain-specific medical knowledge into the segmentation model.
arXiv Detail & Related papers (2023-04-25T07:34:22Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
We propose a novel Transformer-based Diffusion framework, called MedSegDiff-V2.
We verify its effectiveness on 20 medical image segmentation tasks with different image modalities.
arXiv Detail & Related papers (2023-01-19T03:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.