DB-SAM: Delving into High Quality Universal Medical Image Segmentation
- URL: http://arxiv.org/abs/2410.04172v1
- Date: Sat, 5 Oct 2024 14:36:43 GMT
- Title: DB-SAM: Delving into High Quality Universal Medical Image Segmentation
- Authors: Chao Qin, Jiale Cao, Huazhu Fu, Fahad Shahbaz Khan, Rao Muhammad Anwer,
- Abstract summary: We propose a dual-branch adapted SAM framework, named DB-SAM, to bridge the gap between natural and 2D/3D medical data.
Our proposed DB-SAM achieves an absolute gain of 8.8%, compared to a recent medical SAM adapter in the literature.
- Score: 100.63434169944853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the Segment Anything Model (SAM) has demonstrated promising segmentation capabilities in a variety of downstream segmentation tasks. However in the context of universal medical image segmentation there exists a notable performance discrepancy when directly applying SAM due to the domain gap between natural and 2D/3D medical data. In this work, we propose a dual-branch adapted SAM framework, named DB-SAM, that strives to effectively bridge this domain gap. Our dual-branch adapted SAM contains two branches in parallel: a ViT branch and a convolution branch. The ViT branch incorporates a learnable channel attention block after each frozen attention block, which captures domain-specific local features. On the other hand, the convolution branch employs a light-weight convolutional block to extract domain-specific shallow features from the input medical image. To perform cross-branch feature fusion, we design a bilateral cross-attention block and a ViT convolution fusion block, which dynamically combine diverse information of two branches for mask decoder. Extensive experiments on large-scale medical image dataset with various 3D and 2D medical segmentation tasks reveal the merits of our proposed contributions. On 21 3D medical image segmentation tasks, our proposed DB-SAM achieves an absolute gain of 8.8%, compared to a recent medical SAM adapter in the literature. The code and model are available at https://github.com/AlfredQin/DB-SAM.
Related papers
- SAM2-UNet: Segment Anything 2 Makes Strong Encoder for Natural and Medical Image Segmentation [51.90445260276897]
We prove that the Segment Anything Model 2 (SAM2) can be a strong encoder for U-shaped segmentation models.
We propose a simple but effective framework, termed SAM2-UNet, for versatile image segmentation.
arXiv Detail & Related papers (2024-08-16T17:55:38Z) - Segment Anything in Medical Images and Videos: Benchmark and Deployment [8.51742337818826]
We first present a comprehensive benchmarking of the Segment Anything Model 2 (SAM2) across 11 medical image modalities and videos.
Then, we develop a transfer learning pipeline and demonstrate SAM2 can be quickly adapted to medical domain by fine-tuning.
We implement SAM2 as a 3D slicer plugin and Gradio API for efficient 3D image and video segmentation.
arXiv Detail & Related papers (2024-08-06T17:58:18Z) - Segment anything model 2: an application to 2D and 3D medical images [16.253160684182895]
Segment Anything Model (SAM) has gained significant attention because of its ability to segment various objects in images given a prompt.
Recently developed SAM 2 has extended this ability to video inputs.
This opens an opportunity to apply SAM to 3D images, one of the fundamental tasks in the medical imaging field.
arXiv Detail & Related papers (2024-08-01T17:57:25Z) - Fantastic Animals and Where to Find Them: Segment Any Marine Animal with Dual SAM [62.85895749882285]
Marine Animal (MAS) involves segmenting animals within marine environments.
We propose a novel feature learning framework, named Dual-SAM for high-performance MAS.
Our proposed method achieves state-of-the-art performances on five widely-used MAS datasets.
arXiv Detail & Related papers (2024-04-07T15:34:40Z) - Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding [15.401507589312702]
This paper introduces H-SAM, a prompt-free adaptation of the Segment Anything Model (SAM) for efficient fine-tuning of medical images.
In the initial stage, H-SAM employs SAM's original decoder to generate a prior probabilistic mask, guiding a more intricate decoding process.
Our H-SAM demonstrates a 4.78% improvement in average Dice compared to existing prompt-free SAM variants.
arXiv Detail & Related papers (2024-03-27T05:55:16Z) - I-MedSAM: Implicit Medical Image Segmentation with Segment Anything [24.04558900909617]
We propose I-MedSAM, which leverages the benefits of both continuous representations and SAM to obtain better cross-domain ability and accurate boundary delineation.
Our proposed method with only 1.6M trainable parameters outperforms existing methods including discrete and implicit methods.
arXiv Detail & Related papers (2023-11-28T00:43:52Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - SAM-Med2D [34.82072231983896]
We introduce SAM-Med2D, the most comprehensive studies on applying SAM to medical 2D images.
We first collect and curate approximately 4.6M images and 19.7M masks from public and private datasets.
We fine-tune the encoder and decoder of the original SAM to obtain a well-performed SAM-Med2D.
arXiv Detail & Related papers (2023-08-30T17:59:02Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
The Segment Anything Model (SAM) has recently gained popularity in the field of image segmentation.
Recent studies and individual experiments have shown that SAM underperforms in medical image segmentation.
We propose the Medical SAM Adapter (Med-SA), which incorporates domain-specific medical knowledge into the segmentation model.
arXiv Detail & Related papers (2023-04-25T07:34:22Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.