論文の概要: Benchmarking Attacks on Learning with Errors
- arxiv url: http://arxiv.org/abs/2408.00882v1
- Date: Thu, 1 Aug 2024 19:21:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 15:06:04.661559
- Title: Benchmarking Attacks on Learning with Errors
- Title(参考訳): エラーによる学習におけるベンチマークアタック
- Authors: Emily Wenger, Eshika Saxena, Mohamed Malhou, Ellie Thieu, Kristin Lauter,
- Abstract要約: 誤りを伴う学習(LWE)に基づく格子暗号スキームは、後量子暗号システムとして使われるためにNISTによって標準化されている。
標準化されたパラメータのLWEシークレットリカバリのための最初のベンチマークを、小さくて低ウェイトな(スパースな)シークレットに対して提供します。
SALSAとCool & Cruelの攻撃を大きな形で拡張し、MitM攻撃の実装とスケールアップを初めて行います。
- 参考スコア(独自算出の注目度): 9.031051362571436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lattice cryptography schemes based on the learning with errors (LWE) hardness assumption have been standardized by NIST for use as post-quantum cryptosystems, and by HomomorphicEncryption.org for encrypted compute on sensitive data. Thus, understanding their concrete security is critical. Most work on LWE security focuses on theoretical estimates of attack performance, which is important but may overlook attack nuances arising in real-world implementations. The sole existing concrete benchmarking effort, the Darmstadt Lattice Challenge, does not include benchmarks relevant to the standardized LWE parameter choices - such as small secret and small error distributions, and Ring-LWE (RLWE) and Module-LWE (MLWE) variants. To improve our understanding of concrete LWE security, we provide the first benchmarks for LWE secret recovery on standardized parameters, for small and low-weight (sparse) secrets. We evaluate four LWE attacks in these settings to serve as a baseline: the Search-LWE attacks uSVP, SALSA, and Cool & Cruel, and the Decision-LWE attack: Dual Hybrid Meet-in-the-Middle (MitM). We extend the SALSA and Cool & Cruel attacks in significant ways, and implement and scale up MitM attacks for the first time. For example, we recover hamming weight $9-11$ binomial secrets for KYBER ($\kappa=2$) parameters in $28-36$ hours with SALSA and Cool\&Cruel, while we find that MitM can solve Decision-LWE instances for hamming weights up to $4$ in under an hour for Kyber parameters, while uSVP attacks do not recover any secrets after running for more than $1100$ hours. We also compare concrete performance against theoretical estimates. Finally, we open source the code to enable future research.
- Abstract(参考訳): 誤りを伴う学習(LWE)に基づく格子暗号スキームは、後量子暗号システムとして使われるためにNISTによって標準化され、機密データを暗号化するためのHomomorphicEncryption.orgによって標準化された。
そのため、具体的なセキュリティを理解することが重要である。
LWEセキュリティに関するほとんどの研究は、攻撃性能の理論的推定に重点を置いている。
現存する唯一の具体的なベンチマークの取り組みであるDarmstadt Lattice Challengeは、小さな秘密や小さなエラー分布のような標準LWEパラメータの選択に関連するベンチマークや、Ring-LWE(RLWE)とModule-LWE(MLWE)の亜種を含まない。
具体的なLWEセキュリティの理解を深めるために、LWEの秘密回復のためのベンチマークを標準化されたパラメータに対して提供します。
検索-LWEはuSVP, SALSA, Cool & Cruel, Decision-LWE攻撃はDual Hybrid Meet-in-the-Middle (MitM)である。
SALSAとCool & Cruelの攻撃を大きな形で拡張し、MitM攻撃の実装とスケールアップを初めて行います。
例えば、KYBER(\kappa=2$)パラメータのハミングウェイト9-11ドルのバイナリシークレットを、SALSAとCool\&Cruelで28-36ドルの時間で回収していますが、MitMは、Kyberパラメータのハミングウェイト最大最大4ドルまで、USVP攻撃は、100ドル以上走った後、シークレットを回復できません。
また, 実測値と実測値との比較を行った。
最後に、将来の研究を可能にするために、コードをオープンソース化します。
関連論文リスト
- Denial-of-Service Poisoning Attacks against Large Language Models [64.77355353440691]
LLMはDenial-of-Service(DoS)攻撃に対して脆弱で、スペルエラーや非意味的なプロンプトが[EOS]トークンを生成することなく、無限のアウトプットをトリガーする。
本研究では, LLM に対する毒素を用いた DoS 攻撃について提案し, 1 つの毒素を注入することで, 出力長の限界を破ることができることを示した。
論文 参考訳(メタデータ) (2024-10-14T17:39:31Z) - Style Outweighs Substance: Failure Modes of LLM Judges in Alignment Benchmarking [56.275521022148794]
ポストトレーニング法は、人間のペアワイズ選好とのより良い対応により、優れたアライメントを主張する。
LLM-judgeの好みは、アライメントのためのより具体的なメトリクスの進捗に変換されますか、そうでなければ、なぜそうでないのでしょうか?
その結果,(1) LLM-judge の嗜好は,安全性,世界知識,指導の具体的な尺度と相関せず,(2) LLM-judge の暗黙バイアスが強く,事実性や安全性よりもスタイルを優先し,(3) POステージではなく,訓練後の微調整段階がアライメントに最も影響していることが判明した。
論文 参考訳(メタデータ) (2024-09-23T17:58:07Z) - Prompt Leakage effect and defense strategies for multi-turn LLM interactions [95.33778028192593]
システムプロンプトの漏洩は知的財産を侵害し、攻撃者に対する敵の偵察として機能する可能性がある。
我々は, LLM sycophancy 効果を利用して, 平均攻撃成功率 (ASR) を17.7%から86.2%に高めるユニークな脅威モデルを構築した。
7つのブラックボックス防衛戦略の緩和効果と、漏洩防止のためのオープンソースモデルを微調整する。
論文 参考訳(メタデータ) (2024-04-24T23:39:58Z) - The cool and the cruel: separating hard parts of LWE secrets [11.000531626756853]
スパースバイナリLWEシークレットに対する既知の攻撃には、スパースデュアルアタックとミドルアタックにおけるハイブリッドスパースデュアルミートが含まれる。
本稿では,メモリ要求の少ない新しい統計的攻撃を提案する。
論文 参考訳(メタデータ) (2024-03-15T14:16:21Z) - PAL: Proxy-Guided Black-Box Attack on Large Language Models [55.57987172146731]
大規模言語モデル(LLM)は近年人気が高まっているが、操作時に有害なコンテンツを生成する能力を示している。
PAL(Proxy-Guided Attack on LLMs)は, ブラックボックスクエリのみの設定で, LLMに対する最初の最適化ベースの攻撃である。
GPT-3.5-Turboの攻撃成功率は84%,Llama-2-7Bの攻撃成功率は48%であった。
論文 参考訳(メタデータ) (2024-02-15T02:54:49Z) - SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models [107.82336341926134]
SALAD-Benchは、大規模言語モデル(LLM)を評価するために特別に設計された安全ベンチマークである。
それは、その大規模な、豊富な多様性、三つのレベルにまたがる複雑な分類、多目的機能を通じて、従来のベンチマークを超越している。
論文 参考訳(メタデータ) (2024-02-07T17:33:54Z) - Salsa Fresca: Angular Embeddings and Pre-Training for ML Attacks on
Learning With Errors [10.800552110718714]
LWE(Learning with Errors)は、鍵交換とデジタル署名のための量子後暗号システムの基礎となる難解な数学問題である。
以前の作業では、小さな秘密を持つLWE問題に対する機械学習(ML)ベースの新たな攻撃を提案したが、これらの攻撃には、秘密をトレーニングし、回復するのに数日を要する数百万のLWEサンプルが必要である。
我々は、これらの攻撃を改善するために、3つの重要な方法、より良い前処理、角埋め込み、モデル事前訓練を提案する。
論文 参考訳(メタデータ) (2024-02-02T00:48:27Z) - Bypassing the Safety Training of Open-Source LLMs with Priming Attacks [3.8023902618391783]
本稿では,SOTA オープンソース LLM の脆弱性を,単純かつ最適化不要な攻撃下で検討する。
提案攻撃は,Llama Guardが測定した有害行動に対する攻撃成功率を,ベースラインと比較して最大3.3倍向上させる。
論文 参考訳(メタデータ) (2023-12-19T16:47:12Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z) - SALSA PICANTE: a machine learning attack on LWE with binary secrets [8.219373043653507]
スパースバイナリシークレットを用いたLWEに対する強化機械学習攻撃であるPICANTEを提案する。
PICANTEは、より大きな次元(最大$n=350$)で秘密を回収し、より大きなハミング重みを持つ。
PICANTEはNISTのLWE標準を脅かしていないが、SALSAよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-03-07T19:01:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。