Discrete Randomized Smoothing Meets Quantum Computing
- URL: http://arxiv.org/abs/2408.00895v1
- Date: Thu, 1 Aug 2024 20:21:52 GMT
- Title: Discrete Randomized Smoothing Meets Quantum Computing
- Authors: Tom Wollschläger, Aman Saxena, Nicola Franco, Jeanette Miriam Lorenz, Stephan Günnemann,
- Abstract summary: We show how to encode all the perturbations of the input binary data in superposition and use Quantum Amplitude Estimation (QAE) to obtain a quadratic reduction in the number of calls to the model.
In addition, we propose a new binary threat model to allow for an extensive evaluation of our approach on images, graphs, and text.
- Score: 40.54768963869454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breakthroughs in machine learning (ML) and advances in quantum computing (QC) drive the interdisciplinary field of quantum machine learning to new levels. However, due to the susceptibility of ML models to adversarial attacks, practical use raises safety-critical concerns. Existing Randomized Smoothing (RS) certification methods for classical machine learning models are computationally intensive. In this paper, we propose the combination of QC and the concept of discrete randomized smoothing to speed up the stochastic certification of ML models for discrete data. We show how to encode all the perturbations of the input binary data in superposition and use Quantum Amplitude Estimation (QAE) to obtain a quadratic reduction in the number of calls to the model that are required compared to traditional randomized smoothing techniques. In addition, we propose a new binary threat model to allow for an extensive evaluation of our approach on images, graphs, and text.
Related papers
- Memory-Augmented Hybrid Quantum Reservoir Computing [0.0]
We present a hybrid quantum-classical approach that implements memory through classical post-processing of quantum measurements.
We tested our model on two physical platforms: a fully connected Ising model and a Rydberg atom array.
arXiv Detail & Related papers (2024-09-15T22:44:09Z) - Learning Density Functionals from Noisy Quantum Data [0.0]
noisy intermediate-scale quantum (NISQ) devices are used to generate training data for machine learning (ML) models.
We show that a neural-network ML model can successfully generalize from small datasets subject to noise typical of NISQ algorithms.
Our findings suggest a promising pathway for leveraging NISQ devices in practical quantum simulations.
arXiv Detail & Related papers (2024-09-04T17:59:55Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Explicit quantum surrogates for quantum kernel models [0.6834295298053009]
We propose a quantum-classical hybrid algorithm to create an explicit quantum surrogate (EQS) for trained implicit models.
This involves diagonalizing an observable from the implicit model and constructing a corresponding quantum circuit.
The EQS framework reduces prediction costs, mitigates barren plateau issues, and combines the strengths of both QML approaches.
arXiv Detail & Related papers (2024-08-06T07:15:45Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
We introduce the Quantum-Train(QT) framework, a novel approach that integrates quantum computing with machine learning algorithms.
QT achieves remarkable results by employing a quantum neural network alongside a classical mapping model.
arXiv Detail & Related papers (2024-05-18T14:35:57Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Structural risk minimization for quantum linear classifiers [0.0]
Quantum machine learning (QML) stands out as one of the typically highlighted candidates for quantum computing's near-term "killer application"
We investigate capacity measures of two closely related QML models called explicit and implicit quantum linear classifiers.
We identify that the rank and Frobenius norm of the observables used in the QML model closely control the model's capacity.
arXiv Detail & Related papers (2021-05-12T10:39:55Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.