Memory-Augmented Hybrid Quantum Reservoir Computing
- URL: http://arxiv.org/abs/2409.09886v2
- Date: Tue, 12 Nov 2024 11:19:50 GMT
- Title: Memory-Augmented Hybrid Quantum Reservoir Computing
- Authors: J. Settino, L. Salatino, L. Mariani, M. Channab, L. Bozzolo, S. Vallisa, P. BarillĂ , A. Policicchio, N. Lo Gullo, A. Giordano, C. Mastroianni, F. Plastina,
- Abstract summary: We present a hybrid quantum-classical approach that implements memory through classical post-processing of quantum measurements.
We tested our model on two physical platforms: a fully connected Ising model and a Rydberg atom array.
- Score: 0.0
- License:
- Abstract: Reservoir computing (RC) is an effective method for predicting chaotic systems by using a high-dimensional dynamic reservoir with fixed internal weights, while keeping the learning phase linear, which simplifies training and reduces computational complexity compared to fully trained recurrent neural networks (RNNs). Quantum reservoir computing (QRC) uses the exponential growth of Hilbert spaces in quantum systems, allowing for greater information processing, memory capacity, and computational power. However, the original QRC proposal requires coherent injection of inputs multiple times, complicating practical implementation. We present a hybrid quantum-classical approach that implements memory through classical post-processing of quantum measurements. This approach avoids the need for multiple coherent input injections and is evaluated on benchmark tasks, including the chaotic Mackey-Glass time series prediction. We tested our model on two physical platforms: a fully connected Ising model and a Rydberg atom array. The optimized model demonstrates promising predictive capabilities, achieving a higher number of steps compared to previously reported approaches.
Related papers
- Regression and Classification with Single-Qubit Quantum Neural Networks [0.0]
We use a resource-efficient and scalable Single-Qubit Quantum Neural Network (SQQNN) for both regression and classification tasks.
For classification, we introduce a novel training method inspired by the Taylor series, which can efficiently find a global minimum in a single step.
The SQQNN exhibits virtually error-free and strong performance in regression and classification tasks, including the MNIST dataset.
arXiv Detail & Related papers (2024-12-12T17:35:36Z) - NN-AE-VQE: Neural network parameter prediction on autoencoded variational quantum eigensolvers [1.7400502482492273]
In recent years, the field of quantum computing has become significantly more mature.
We present an auto-encoded VQE with neural-network predictions: NN-AE-VQE.
We demonstrate these methods on a $H$ molecule, achieving chemical accuracy.
arXiv Detail & Related papers (2024-11-23T23:09:22Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Discrete Randomized Smoothing Meets Quantum Computing [40.54768963869454]
We show how to encode all the perturbations of the input binary data in superposition and use Quantum Amplitude Estimation (QAE) to obtain a quadratic reduction in the number of calls to the model.
In addition, we propose a new binary threat model to allow for an extensive evaluation of our approach on images, graphs, and text.
arXiv Detail & Related papers (2024-08-01T20:21:52Z) - Higher order quantum reservoir computing for non-intrusive reduced-order models [0.0]
Quantum reservoir computing technique (QRC) is a hybrid quantum-classical framework employing an ensemble of interconnected small quantum systems.
We show that QRC is able to predict complex nonlinear dynamical systems in a stable and accurate manner.
arXiv Detail & Related papers (2024-07-31T13:37:04Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Practical Few-Atom Quantum Reservoir Computing [0.0]
Quantum Reservoir Computing (QRC) harnesses quantum systems to tackle intricate computational problems with exceptional efficiency and minimized energy usage.
This paper presents a QRC framework that utilizes a minimalistic quantum reservoir, consisting of only a few two-level atoms within an optical cavity.
arXiv Detail & Related papers (2024-05-08T04:14:31Z) - Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.
We focus on nuclear-physics applications and consider a qubit-efficient mapping on the lattice, which can efficiently represent the large volumes required for realistic scattering simulations.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - High-rate discretely-modulated continuous-variable quantum key
distribution using quantum machine learning [4.236937886028215]
We propose a high-rate scheme for discretely-modulated continuous-variable quantum key distribution (DM CVQKD) using quantum machine learning technologies.
A low-complexity quantum k-nearest neighbor (QkNN) is designed for predicting the lossy discretely-modulated coherent states (DMCSs) at Bob's side.
Numerical simulation shows that the secret key rate of our proposed scheme is explicitly superior to the existing DM CVQKD protocols.
arXiv Detail & Related papers (2023-08-07T04:00:13Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
We show that useful information can be extracted from the quantum-mechanical implementation of Harrow-Hassidim-Lloyd (HHL)
This paper shows, however, that useful information can be extracted from the quantum-mechanical implementation of HHL, and used to reduce the complexity of finding the solution on the classical side.
arXiv Detail & Related papers (2022-10-23T11:58:05Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.