論文の概要: Noise-Resilient and Reduced Depth Approximate Adders for NISQ Quantum Computing
- arxiv url: http://arxiv.org/abs/2408.00927v1
- Date: Thu, 1 Aug 2024 21:34:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 14:56:17.913270
- Title: Noise-Resilient and Reduced Depth Approximate Adders for NISQ Quantum Computing
- Title(参考訳): NISQ量子コンピューティングのための耐雑音性と深さ近似加算器
- Authors: Bhaskar Gaur, Travis S. Humble, Himanshu Thapliyal,
- Abstract要約: NISQ量子コンピューティングにおける量子加算器回路のノイズレジリエンスの近似計算による改善について検討する。
雑音耐性を保ちながら、深さを減らすために、近似量子加算器の5つの設計を提案する。
- 参考スコア(独自算出の注目度): 0.5188841610098435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The "Noisy intermediate-scale quantum" NISQ machine era primarily focuses on mitigating noise, controlling errors, and executing high-fidelity operations, hence requiring shallow circuit depth and noise robustness. Approximate computing is a novel computing paradigm that produces imprecise results by relaxing the need for fully precise output for error-tolerant applications including multimedia, data mining, and image processing. We investigate how approximate computing can improve the noise resilience of quantum adder circuits in NISQ quantum computing. We propose five designs of approximate quantum adders to reduce depth while making them noise-resilient, in which three designs are with carryout, while two are without carryout. We have used novel design approaches that include approximating the Sum only from the inputs (pass-through designs) and having zero depth, as they need no quantum gates. The second design style uses a single CNOT gate to approximate the SUM with a constant depth of O(1). We performed our experimentation on IBM Qiskit on noise models including thermal, depolarizing, amplitude damping, phase damping, and bitflip: (i) Compared to exact quantum ripple carry adder without carryout the proposed approximate adders without carryout have improved fidelity ranging from 8.34% to 219.22%, and (ii) Compared to exact quantum ripple carry adder with carryout the proposed approximate adders with carryout have improved fidelity ranging from 8.23% to 371%. Further, the proposed approximate quantum adders are evaluated in terms of various error metrics.
- Abstract(参考訳): NISQマシン時代は、主にノイズの緩和、エラーの制御、高忠実度操作の実行に重点を置いており、その結果、浅い回路深さとノイズロバスト性を必要としている。
近似コンピューティング(英: Approximate computing)は、マルチメディア、データマイニング、画像処理を含むエラー耐性アプリケーションのための完全正確な出力の必要性を緩和し、不正確な結果を生成する新しいコンピューティングパラダイムである。
NISQ量子コンピューティングにおける量子加算器回路のノイズレジリエンスの近似計算による改善について検討する。
ノイズ耐性を保ちつつ,5つの量子加算器の設計を提案し,その間に3つの設計が搬送され,一方2つは搬送されていない。
我々は、入力(パススルー設計)からのみSumを近似し、量子ゲートを必要としないため、深さがゼロとなるような新しい設計手法を用いてきた。
第2の設計スタイルでは、1つのCNOTゲートを使用してSUMを一定の深さのO(1)で近似する。
我々はIBM Qiskitで、熱、脱分極、振幅減衰、位相減衰、ビットフリップを含むノイズモデルの実験を行った。
一 キャリーバックなしの正確な量子リップルキャリー添加器と比較して、キャリーアウトなしの近似加算器は、8.34%から219.22%の忠実度を向上し、
(II) キャリーニングによる正確な量子リップルキャリー添加器と比較して, キャリーニングによる近似加算器は8.23%から371%に改善された。
さらに,提案した近似量子加算器を,様々な誤差指標を用いて評価する。
関連論文リスト
- A Logarithmic Depth Quantum Carry-Lookahead Modulo $(2^n-1)$ Adder [0.8192907805418581]
量子アルゴリズムの実装には、モジュロ加算のための量子演算回路の開発が不可欠である。
現在のノイズ中間スケール量子(NISQ)時代における量子コンピュータは、フォールトトレラント設計に関連する計算コストを処理できない。
この研究は量子キャリーヘッドモジュロ$(2n - 1)$ adder (QCLMA)を示し、2つのnビット番号を受け取り、その加算をO(log n)深さで行うように設計されている。
論文 参考訳(メタデータ) (2024-08-02T04:31:22Z) - Performing Non-Local Phase Estimation with a Rydberg-Superconducting Qubit Hybrid [0.0]
提案する超伝導-共振器-原子ハイブリッドシステムにおいて,分散位相推定アルゴリズムの実行を数値シミュレーションする。
2つの量子ビット間の絡み合うゲートは、E2ゲートと呼ばれる分散位相推定アルゴリズムで利用される。
GRAPEアルゴリズムは、90%以上の忠実度を持つRydberg原子とマルチキュービットゲートの非常に正確なエンジニアリングを示した。
論文 参考訳(メタデータ) (2024-02-22T16:11:48Z) - Optimized Noise Suppression for Quantum Circuits [0.40964539027092917]
クロストークノイズは、例えば、クロス共鳴ベースの超伝導量子プロセッサにおける深刻なエラー源である。
Intrepidプログラミングアルゴリズムは、スワップ挿入によって最適化されたキュービットルーティングに関する以前の作業を拡張する。
最大127キュービットの2つのチップのクロストークノイズを特徴付けることで,提案手法の評価を行った。
論文 参考訳(メタデータ) (2024-01-12T07:34:59Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCSは、量子古典ハイブリッドシステムにおけるインデックス検索とカウントを目的としている。
我々はQiskitでIQuCSを実装し、集中的な実験を行う。
その結果、量子ビットの消費を最大66.2%削減できることが示されている。
論文 参考訳(メタデータ) (2022-09-22T21:54:28Z) - Quantum thermodynamic methods to purify a qubit on a quantum processing
unit [68.8204255655161]
我々は、同じ量子ビットを備えた量子処理ユニット上で量子ビットを浄化する量子熱力学法について報告する。
私たちの出発点は、よく知られた2つのキュービットスワップエンジンをエミュレートする3つのキュービット設計です。
使用可能な超伝導量子ビットベースのQPU上に実装し,200mKまでの浄化能を観測する。
論文 参考訳(メタデータ) (2022-01-31T16:13:57Z) - QuantumNAT: Quantum Noise-Aware Training with Noise Injection,
Quantization and Normalization [22.900530292063348]
量子回路(PQC)は、短期量子ハードウェアにおける量子優位性を約束している。
しかし、大きな量子ノイズ(エラー)のため、PQCモデルの性能は実際の量子デバイスで著しく低下する。
本稿では,PQC固有のフレームワークであるQuantumNATを提案する。
論文 参考訳(メタデータ) (2021-10-21T17:59:19Z) - Achieving fault tolerance against amplitude-damping noise [1.7289359743609742]
我々は,振幅減衰雑音の存在下で,フォールトトレラントな量子コンピューティングコンポーネントのプロトコルを開発する。
フォールトトレラントなエンコードガジェットの集合を記述し、ノイズの擬似閾値を計算する。
我々の研究は、量子フォールトトレランスのアイデアをターゲット雑音モデルに適用する可能性を実証している。
論文 参考訳(メタデータ) (2021-07-12T14:59:54Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
変分量子アルゴリズムは計算的に難しい問題を解くのに有望であると考えられている。
本稿では,QAOAの回路深度依存性能について実験的に検討する。
この結果から, 連続ゲートセットの使用は, 短期量子コンピュータの影響を拡大する上で重要な要素である可能性が示唆された。
論文 参考訳(メタデータ) (2020-05-11T17:20:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。