PERSOMA: PERsonalized SOft ProMpt Adapter Architecture for Personalized Language Prompting
- URL: http://arxiv.org/abs/2408.00960v1
- Date: Fri, 2 Aug 2024 00:24:22 GMT
- Title: PERSOMA: PERsonalized SOft ProMpt Adapter Architecture for Personalized Language Prompting
- Authors: Liam Hebert, Krishna Sayana, Ambarish Jash, Alexandros Karatzoglou, Sukhdeep Sodhi, Sumanth Doddapaneni, Yanli Cai, Dima Kuzmin,
- Abstract summary: PERSOMA offers a novel approach to efficiently capture user history.
It achieves this by resampling and compressing interactions as free form text into expressive soft prompt embeddings.
Our results demonstrate PERSOMA's superior ability to handle large and complex user histories compared to existing embedding-based and text-prompt-based techniques.
- Score: 44.32537382154617
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the nuances of a user's extensive interaction history is key to building accurate and personalized natural language systems that can adapt to evolving user preferences. To address this, we introduce PERSOMA, Personalized Soft Prompt Adapter architecture. Unlike previous personalized prompting methods for large language models, PERSOMA offers a novel approach to efficiently capture user history. It achieves this by resampling and compressing interactions as free form text into expressive soft prompt embeddings, building upon recent research utilizing embedding representations as input for LLMs. We rigorously validate our approach by evaluating various adapter architectures, first-stage sampling strategies, parameter-efficient tuning techniques like LoRA, and other personalization methods. Our results demonstrate PERSOMA's superior ability to handle large and complex user histories compared to existing embedding-based and text-prompt-based techniques.
Related papers
- LLMs + Persona-Plug = Personalized LLMs [41.60364110693824]
Personalization plays a critical role in numerous language tasks and applications, since users with the same requirements may prefer diverse outputs based on their individual interests.
This has led to the development of various personalized approaches aimed at adapting large language models (LLMs) to generate customized outputs aligned with user preferences.
We propose a novel personalized LLM model, ours. It constructs a user-specific embedding for each individual by modeling all her historical contexts through a lightweight plug-in user embedder module.
arXiv Detail & Related papers (2024-09-18T11:54:45Z) - Aligning LLM Agents by Learning Latent Preference from User Edits [23.235995078727658]
We study interactive learning of language agents based on user edits made to the agent's output.
We propose a learning framework, PRELUDE, that infers a description of the user's latent preference based on historic edit data.
We introduce two interactive environments -- summarization and email writing, and use a GPT-4 simulated user for evaluation.
arXiv Detail & Related papers (2024-04-23T17:57:47Z) - Efficient Prompting Methods for Large Language Models: A Survey [50.171011917404485]
Prompting has become a mainstream paradigm for adapting large language models (LLMs) to specific natural language processing tasks.
This approach brings the additional computational burden of model inference and human effort to guide and control the behavior of LLMs.
We present the basic concepts of prompting, review the advances for efficient prompting, and highlight future research directions.
arXiv Detail & Related papers (2024-04-01T12:19:08Z) - Democratizing Large Language Models via Personalized Parameter-Efficient Fine-tuning [36.88126051792774]
Personalization in large language models (LLMs) is increasingly important.
One PEFT Per User (OPPU) employs personalized parameter-efficient fine-tuning (PEFT) modules to store user-specific behavior patterns and preferences.
OPPU significantly outperforms existing prompt-based methods across seven diverse tasks in the LaMP benchmark.
arXiv Detail & Related papers (2024-02-06T21:03:52Z) - User Embedding Model for Personalized Language Prompting [9.472634942498859]
We introduce a new User Embedding Module (UEM) that efficiently processes user history in free-form text by compressing and representing them as embeddings.
Our experiments demonstrate the superior capability of this approach in handling significantly longer histories.
The main contribution of this research is to demonstrate the ability to bias language models with user signals represented as embeddings.
arXiv Detail & Related papers (2024-01-10T00:35:52Z) - DialCLIP: Empowering CLIP as Multi-Modal Dialog Retriever [83.33209603041013]
We propose a parameter-efficient prompt-tuning method named DialCLIP for multi-modal dialog retrieval.
Our approach introduces a multi-modal context generator to learn context features which are distilled into prompts within the pre-trained vision-language model CLIP.
To facilitate various types of retrieval, we also design multiple experts to learn mappings from CLIP outputs to multi-modal representation space.
arXiv Detail & Related papers (2024-01-02T07:40:12Z) - PerPLM: Personalized Fine-tuning of Pretrained Language Models via
Writer-specific Intermediate Learning and Prompts [16.59511985633798]
Pretrained language models (PLMs) are powerful tools for capturing context.
PLMs are typically pretrained and fine-tuned for universal use across different writers.
This study aims to improve the accuracy of text understanding tasks by personalizing the fine-tuning of PLMs for specific writers.
arXiv Detail & Related papers (2023-09-14T14:03:48Z) - LLM-Rec: Personalized Recommendation via Prompting Large Language Models [62.481065357472964]
Large language models (LLMs) have showcased their ability to harness commonsense knowledge and reasoning.
Recent advances in large language models (LLMs) have showcased their remarkable ability to harness commonsense knowledge and reasoning.
This study introduces a novel approach, coined LLM-Rec, which incorporates four distinct prompting strategies of text enrichment for improving personalized text-based recommendations.
arXiv Detail & Related papers (2023-07-24T18:47:38Z) - TEMPERA: Test-Time Prompting via Reinforcement Learning [57.48657629588436]
We propose Test-time Prompt Editing using Reinforcement learning (TEMPERA)
In contrast to prior prompt generation methods, TEMPERA can efficiently leverage prior knowledge.
Our method achieves 5.33x on average improvement in sample efficiency when compared to the traditional fine-tuning methods.
arXiv Detail & Related papers (2022-11-21T22:38:20Z) - A Neural Topical Expansion Framework for Unstructured Persona-oriented
Dialogue Generation [52.743311026230714]
Persona Exploration and Exploitation (PEE) is able to extend the predefined user persona description with semantically correlated content.
PEE consists of two main modules: persona exploration and persona exploitation.
Our approach outperforms state-of-the-art baselines in terms of both automatic and human evaluations.
arXiv Detail & Related papers (2020-02-06T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.