MIS-ME: A Multi-modal Framework for Soil Moisture Estimation
- URL: http://arxiv.org/abs/2408.00963v3
- Date: Wed, 21 Aug 2024 14:47:26 GMT
- Title: MIS-ME: A Multi-modal Framework for Soil Moisture Estimation
- Authors: Mohammed Rakib, Adil Aman Mohammed, D. Cole Diggins, Sumit Sharma, Jeff Michael Sadler, Tyson Ochsner, Arun Bagavathi,
- Abstract summary: We develop a dataset consisting of real-world images taken from ground stations and corresponding weather data.
We also propose MIS-ME - Meteorological & Image based Soil Moisture Estor.
Our analysis shows that MIS-ME achieves a MAPE of 10.14%, outperforming traditional unimodal approaches.
- Score: 0.5235143203977018
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Soil moisture estimation is an important task to enable precision agriculture in creating optimal plans for irrigation, fertilization, and harvest. It is common to utilize statistical and machine learning models to estimate soil moisture from traditional data sources such as weather forecasts, soil properties, and crop properties. However, there is a growing interest in utilizing aerial and geospatial imagery to estimate soil moisture. Although these images capture high-resolution crop details, they are expensive to curate and challenging to interpret. Imagine, an AI-enhanced software tool that predicts soil moisture using visual cues captured by smartphones and statistical data given by weather forecasts. This work is a first step towards that goal of developing a multi-modal approach for soil moisture estimation. In particular, we curate a dataset consisting of real-world images taken from ground stations and their corresponding weather data. We also propose MIS-ME - Meteorological & Image based Soil Moisture Estimator, a multi-modal framework for soil moisture estimation. Our extensive analysis shows that MIS-ME achieves a MAPE of 10.14%, outperforming traditional unimodal approaches with a reduction of 3.25% in MAPE for meteorological data and 2.15% in MAPE for image data, highlighting the effectiveness of tailored multi-modal approaches. Our code and dataset will be available at https://github.com/OSU-Complex-Systems/MIS-ME.git.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Combining Satellite and Weather Data for Crop Type Mapping: An Inverse
Modelling Approach [23.23933321161625]
We propose a deep learning model that combines weather (Daymet) and satellite imagery (Sentinel-2) to generate accurate crop maps.
We show that our approach provides significant improvements over existing algorithms that solely rely on spectral imagery.
We conclude by correlating our results with crop phenology to show that WSTATT is able to capture physical properties of crop growth.
arXiv Detail & Related papers (2024-01-29T04:15:22Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - SSL-SoilNet: A Hybrid Transformer-based Framework with Self-Supervised Learning for Large-scale Soil Organic Carbon Prediction [2.554658234030785]
This study introduces a novel approach that aims to learn the geographical link between multimodal features via self-supervised contrastive learning.
The proposed approach has undergone rigorous testing on two distinct large-scale datasets.
arXiv Detail & Related papers (2023-08-07T13:44:44Z) - Transferring learned patterns from ground-based field imagery to predict
UAV-based imagery for crop and weed semantic segmentation in precision crop
farming [3.95486899327898]
We have developed a deep convolutional network that enables to predict both field and aerial images from UAVs for weed segmentation.
The network learning process is visualized by feature maps at shallow and deep layers.
The study shows that the developed deep convolutional neural network could be used to classify weeds from both field and aerial images.
arXiv Detail & Related papers (2022-10-20T19:25:06Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Semi-supervised Soil Moisture Prediction through Graph Neural Networks [12.891517184512551]
We propose to convert the problem of soil moisture prediction as a semi-supervised learning on temporal graphs.
We propose a dynamic graph neural network which can use the dependency of related locations over a region to predict soil moisture.
Our algorithm, referred as DGLR, provides an end-to-end learning which can predict soil moisture over multiple locations in a region over time and also update the graph structure in between.
arXiv Detail & Related papers (2020-12-07T07:56:11Z) - SMArtCast: Predicting soil moisture interpolations into the future using
Earth observation data in a deep learning framework [0.8399688944263843]
In this work, we analyze measurements of soil moisture and vegetation indiced from satellite imagery.
The system learns to predict the future values of these measurements.
This has the potential to provide a warning for soil moistures that may be inhospitable to crops across an area with limited monitoring capacity.
arXiv Detail & Related papers (2020-03-16T23:06:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.