論文の概要: FBSDiff: Plug-and-Play Frequency Band Substitution of Diffusion Features for Highly Controllable Text-Driven Image Translation
- arxiv url: http://arxiv.org/abs/2408.00998v2
- Date: Tue, 6 Aug 2024 12:01:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-07 13:18:40.526672
- Title: FBSDiff: Plug-and-Play Frequency Band Substitution of Diffusion Features for Highly Controllable Text-Driven Image Translation
- Title(参考訳): FBSDiff: 高可制御性テキスト駆動画像変換のための拡散機能のプラグアンドプレイ周波数帯域置換
- Authors: Xiang Gao, Jiaying Liu,
- Abstract要約: 本稿では,大規模テキスト・ツー・イメージ(T2I)拡散モデルとイメージ・ツー・イメージ(I2I)パラダイムをプラグ・アンド・プレイ方式で適用する,新しい,簡潔かつ効率的なアプローチを提案する。
本手法は,周波数帯域のタイプや帯域幅を調整するだけで,参照画像の導出係数と導出強度の両方を柔軟に制御できる。
- 参考スコア(独自算出の注目度): 19.65838242227773
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale text-to-image diffusion models have been a revolutionary milestone in the evolution of generative AI and multimodal technology, allowing wonderful image generation with natural-language text prompt. However, the issue of lacking controllability of such models restricts their practical applicability for real-life content creation. Thus, attention has been focused on leveraging a reference image to control text-to-image synthesis, which is also regarded as manipulating (or editing) a reference image as per a text prompt, namely, text-driven image-to-image translation. This paper contributes a novel, concise, and efficient approach that adapts pre-trained large-scale text-to-image (T2I) diffusion model to the image-to-image (I2I) paradigm in a plug-and-play manner, realizing high-quality and versatile text-driven I2I translation without any model training, model fine-tuning, or online optimization process. To guide T2I generation with a reference image, we propose to decompose diverse guiding factors with different frequency bands of diffusion features in the DCT spectral space, and accordingly devise a novel frequency band substitution layer which realizes dynamic control of the reference image to the T2I generation result in a plug-and-play manner. We demonstrate that our method allows flexible control over both guiding factor and guiding intensity of the reference image simply by tuning the type and bandwidth of the substituted frequency band, respectively. Extensive qualitative and quantitative experiments verify superiority of our approach over related methods in I2I translation visual quality, versatility, and controllability. The code is publicly available at: https://github.com/XiangGao1102/FBSDiff.
- Abstract(参考訳): 大規模なテキストから画像への拡散モデルは、生成的AIとマルチモーダル技術の進化における画期的なマイルストーンであり、自然言語のテキストプロンプトによる素晴らしい画像生成を可能にしている。
しかし、そのようなモデルの制御性に欠ける問題は、現実のコンテンツ作成に実用的に適用可能であることを制限している。
このようにして、参照画像を利用してテキスト間合成を制御することに注意が向けられ、テキストのプロンプト、すなわちテキスト駆動型画像-画像翻訳に従って参照画像を操作(または編集)すると考えられている。
本稿では,大規模テキスト・ツー・イメージ(T2I)拡散モデルとイメージ・ツー・イメージ(I2I)パラダイムをプラグ・アンド・プレイ方式で適用し,モデルトレーニングやモデル微調整,オンライン最適化などなしに高品質で汎用的なテキスト駆動型I2I翻訳を実現する,新しい,簡潔かつ効率的なアプローチを提案する。
基準画像を用いてT2I生成を誘導するため、DCTスペクトル空間における拡散特性の異なる周波数帯域で多様な誘導因子を分解し、T2I生成結果に対する参照画像の動的制御をプラグアンドプレイで実現する新しい周波数帯域置換層を考案する。
提案手法は,周波数帯域のタイプと帯域幅を調整するだけで,基準画像の導出係数と導出強度を柔軟に制御できることを実証する。
広汎な質的,定量的実験により,I2I翻訳の視覚的品質,汎用性,制御性に対するアプローチの優位性を検証した。
コードはhttps://github.com/XiangGao1102/FBSDiffで公開されている。
関連論文リスト
- Image Regeneration: Evaluating Text-to-Image Model via Generating Identical Image with Multimodal Large Language Models [54.052963634384945]
画像再生タスクを導入し,テキスト・ツー・イメージ・モデルの評価を行う。
我々はGPT4Vを用いて参照画像とT2Iモデルのテキスト入力のギャップを埋める。
また、生成した画像の品質を高めるために、ImageRepainterフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-14T13:52:43Z) - Frequency-Controlled Diffusion Model for Versatile Text-Guided Image-to-Image Translation [17.30877810859863]
大規模テキスト・ツー・イメージ拡散モデル(T2I)は画像・画像翻訳(I2I)の強力なツールとして登場した。
本稿では,周波数制御拡散モデル(FCDiffusion)を提案する。
論文 参考訳(メタデータ) (2024-07-03T11:05:19Z) - UDiffText: A Unified Framework for High-quality Text Synthesis in
Arbitrary Images via Character-aware Diffusion Models [25.219960711604728]
本稿では,事前学習した拡散モデルを用いたテキスト画像生成手法を提案する。
我々のアプローチは、オリジナルのCLIPエンコーダを置き換える軽量文字レベルテキストエンコーダの設計と訓練である。
推論段階の精細化プロセスを用いることで、任意に与えられた画像のテキストを合成する際に、顕著に高いシーケンス精度を実現する。
論文 参考訳(メタデータ) (2023-12-08T07:47:46Z) - Controlling Text-to-Image Diffusion by Orthogonal Finetuning [74.21549380288631]
そこで本研究では,テキストから画像への拡散モデルを下流タスクに適用するための原理的な微調整手法であるorthogonal Finetuning(OFT)を提案する。
既存の方法とは異なり、OFTは単位超球上の対のニューロン関係を特徴付ける超球面エネルギーを確実に保存することができる。
我々のOFTフレームワークは、生成品質と収束速度において既存の手法よりも優れていることを実証的に示す。
論文 参考訳(メタデータ) (2023-06-12T17:59:23Z) - Photorealistic Text-to-Image Diffusion Models with Deep Language
Understanding [53.170767750244366]
Imagenは、前例のないフォトリアリズムと深い言語理解を備えたテキスト間拡散モデルである。
テキスト・ツー・イメージ・モデルをより深く評価するために,テキスト・ツー・イメージ・モデルの総合的かつ挑戦的なベンチマークであるDrawBenchを紹介した。
論文 参考訳(メタデータ) (2022-05-23T17:42:53Z) - Cycle-Consistent Inverse GAN for Text-to-Image Synthesis [101.97397967958722]
本稿では,テキスト・ツー・イメージ・ジェネレーションとテキスト・ガイドによる画像操作を行うために,Cycle-Consistent Inverse GANの統一フレームワークを提案する。
我々は、GANの反転モデルを学び、画像をGANの潜在空間に変換し、各画像の反転潜在符号を得る。
テキスト誘導最適化モジュールでは、反転潜在符号を最適化することにより、所望のセマンティック属性を持つ画像を生成する。
論文 参考訳(メタデータ) (2021-08-03T08:38:16Z) - Towards Open-World Text-Guided Face Image Generation and Manipulation [52.83401421019309]
顔画像生成と操作の両方に統一的なフレームワークを提案する。
本手法は,画像とテキストの両方を含むオープンワールドシナリオをサポートし,再トレーニングや微調整,後処理は行わない。
論文 参考訳(メタデータ) (2021-04-18T16:56:07Z) - Text to Image Generation with Semantic-Spatial Aware GAN [41.73685713621705]
テキストから画像生成(T2I)モデルは、テキスト記述と意味的に一致するフォトリアリズム画像を生成することを目的としている。
本稿では,テキストエンコーダがより良いテキスト情報を活用できるように,エンドツーエンドで訓練された新しいフレームワークSemantic-Spatial Aware GANを提案する。
論文 参考訳(メタデータ) (2021-04-01T15:48:01Z) - TIME: Text and Image Mutual-Translation Adversarial Networks [55.1298552773457]
テキストと画像相互変換対応ネットワーク(TIME)を提案する。
TIMEは、T2IジェネレータGと画像キャプション識別器Dをジェネレータネットワークフレームワークで学習する。
実験では、TIMEはCUBおよびMS-COCOデータセット上での最先端(SOTA)性能を達成する。
論文 参考訳(メタデータ) (2020-05-27T06:40:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。